ГОРЕНИЕ, ВЗРЫВ И УДАРНЫЕ ВОЛНЫ

УДК 541.126

МЕХАНИЗМЫ ОКИСЛЕНИЯ И ГОРЕНИЯ НОРМАЛЬНЫХ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ: ПЕРЕХОД ОТ С₁-С₆ К С₇Н₁₆

© 2010 г. В. Я. Басевич*, А. А. Беляев, В. С. Посвянский, С. М. Фролов

Институт химической физики им. Н.Н. Семенова Российской академии наук, Москва *E-mail: basevich@center.chph.ras.ru Поступила в редакцию 24.05.2010

В работе применен предложенный ранее алгоритм построения оптимального механизма высоко- и низкотемпературного окисления и горения нормальных парафиновых углеводородов с главными процессами, определяющими скорость реакции и образование основных промежуточных и конечных продуктов. Механизм имеет статус неэмпирического детального, поскольку все элементарные реакции кинетически обоснованы. Две особенности характерны для этого механизма: в нем отсутствуют реакции так называемого двойного присоединения кислорода и не рассматриваются в качестве промежуточных частиц изомерные соединения и их производные. Применение упомянутого алгоритма приводит к достаточно компактным моделям, что важно при исследовании химических процессов с участием парафиновых углеводородов C_n с большим *n*. Ранее на основе такого алгоритма построены компактные механизмы окисления и горения пропана, *н*-бутана, *н*-пентана и *н*-гексана. В данной работе рассмотрен неэмпирический детальный механизм окисления и горения и голубых пламен при низкотемпературном самовоспламенении. Проведено сравнение результатов расчетов с экспериментальными данными.

Ключевые слова: углероды парафиновые С₁-С₇, окисление, горение, кинетика.

введение

В последние годы для высших углеводородов предложены детальные механизмы их окисления и горения, включающие сотни частиц и тысячи элементарных химических актов. Такие механизмы учитывают многообразие промежуточных стабильных молекул и радикалов в реакциях углеводородов. Например, в работе [1] для *н*-гептана представлена схема, содержащая 650 частиц и 2300 реакций, а в [2] – для *н*-декана – 715 частиц и 3872 реакций. Несмотря на неоспоримые достоинства таких детальных механизмов, их примене-

Рис. 1. Регистрация давления при самовоспламенении воздушной смеси *н*-гептана. $T_0 = 573$ K, $P_0 = 1.5$ атм [4].

ние для решения многомерных задач газовой динамики горения затруднено в силу громоздкости. Вместе с тем, если учесть все возможные частицы-изомеры и реакции между всеми частицами, легко показать, что объемы механизмов в [1, 2] могут быть намного превзойдены (например, за счет включения полициклических ароматических углеводородов, сажи, фуллеренов, колебательно возбужденных молекул, реакций их образования и расходования и т.д.).

Кроме того, существует неопределенность в построении таких механизмов, поскольку отсутствуют многие необходимые и достаточно проверенные данные по термохимии и по скоростям реакций. Это сказывается на их кинетической обоснованности и точности.

Наконец, во всех известных публикациях отсутствует информация о применимости предлагаемых детальных кинетических механизмов к описанию многостадийного низкотемпературного окисления углеводородов [3], сопровождаемого образованием не только холодных, но и голубых пламен [4, 5]. В монографии [3] и статьях [4, 5] приводятся экспериментальные регистрации давления в закрытом сосуде при многостадийном самовоспламенении смесей изооктана и н-гептана с воздухом. На кривой изменения давления (рис. 1) можно отчетливо выделить три стадии самовоспламенения: первая – холодное пламя с задержкой τ_1 , вторая — голубое пламя и третья — горячий взрыв. Продолжительность первой и второй стадий (указаны стрелками) соответствует задержке горячего взрыва и отмечена как τ_2 (авторы работы [4] дают другое объяснение этим эффектам, но в публикации [3] уже вводится концепция многостадийности). Суммарная задержка самовоспламенения

$\tau_i = \tau_1 + \tau_2.$

Указанные эффекты не только реально существуют, но и играют важную роль, например в предпламенных процессах в поршневых двигателях внутреннего сгорания, поэтому детальные кинетические механизмы окисления углеводородов, несомненно, должны их воспроизводить, а также описывать чувствительность к внешним условиям.

Известные детальные кинетические механизмы, как правило, не являются всеобъемлющими и в определенной степени ограничены. Между тем для решения конкретных задач, в которых должны быть учтены главные процессы, определяющие скорость реакции и образование основных промежуточных и конечных продуктов, представляют интерес не максимальные, а оптимальные механизмы окисления и горения углеводородов. Такие механизмы, даже если они достаточно компактны, не теряют статуса неэмпирических детальных механизмов, пока все

Рис. 2. Расчетная зависимость температуры от времени при самовоспламенении стехиометрической смеси 1.86 об. % C_7H_{16} -воздух: $T_0 = 573$ K, $P_0 = 1.5$ атм.

составляющие их элементарные реакции имеют кинетическое обоснование. Другими словами, при моделировании окисления и горения углеводородов всегда имеется возможность неэкстенсивного построения механизмов с целевым ограничением многообразия продуктов и реакций, но с сохранением основных каналов процесса и принципиально важных типов элементарных актов.

Известна общность в феноменологическом описании реакций парафиновых углеводородов [3–5]. Это позволяет применить алгоритм, рассмотренный в работах [6–9] и использованный ранее для построения химического механизма окисления и горения парафиновых углеводородов (от пропана до н-гексана), для построения механизма окисления и горения следующего члена гомологического ряда – н-гептана. В алгоритм [6-9] заложен принцип неэкстенсивного построения механизма, основанный на следующих допущениях: низкотемпературное разветвление описывается группой реакций с одним присоединением кислорода; каналы реакций окисления через изомерные формы можно исключить из рассмотрения, поскольку они медленнее, чем окисление через неизомеризованные частицы. Подчеркнем, что механизмы окисления С₇H₁₆ неоднократно предлагали ранее (см., например, [10, 11]), однако, как и в упомянутых выше случаях, не было показано, что эти механизмы адекватно описывают многостадийное окисление углеводородов с образованием не только холодных, но и голубых пламен при самовоспламенении. Построение оптимального механизма окисления С₇Н₁₆, основанного на принципе неэкстенсивности и проявляющего стадийность в виде холодных и голубых пламен при низкотемпературном самовоспламенении,

Рис. 3. Зависимости задержек самовоспламенения от температуры для стехиометрической смеси 1.86 об. % C_7H_{16} -воздух при давлении $P_0 = 2.8-40$ атм: Точки – опыты [12–18], кривые – расчет.

необходимо и важно для получения оптимальных механизмов окисления более сложных углеводородов – $C_n H_{2n+2}$ при n > 7.

тропией S_{298}^{o} и теплоемкостями при постоянном давлении

ПОСТРОЕНИЕ МЕХАНИЗМА

Согласно алгоритму [6-9], при разработке кинетического механизма углеводорода С_nH_{2n+2} за основу берется механизм его аналога в гомологическом ряду с числом атомов углерода *n*, меньшим на единицу – $C_{(n-1)}H_{2(n-1)+2}$. Это относится и к реагентам и к реакциям. В гомологическом ряду аналогом, предшествующим н-гептану является н-гексан, поэтому за основу взят механизм окисления и горения C₁-C₆, включающий 72 частицы и 499 реакций [9]. В дополнение к механизму окисления н-гексана в кинетический механизм для н-гептана потребовалось ввести 9 новых частиц и 124 элементарных акта, так что полученный механизм в целом включает 81 частицу и 623 реакции. Алгоритм [6-9] реализован в виде вычислительной программы, которая отбирает новые частицы, новые реакции и их аррениусовские параметры. Дополнительные частицы с энтальпиями образования ΔH_{f298}° , эна также дополнительные реакции и их аррениусовские параметры представлены в табл. 1 и 2.

 $c_p = c_0 + \frac{c_1 T}{10^3} + \frac{c_2 T^2}{10^6} + \frac{c_3 T^3}{10^9},$

Возникновение холодного и голубого пламени при многостадийном самовоспламенении - характерный пример критических явлений в химической кинетике. Известно, что критические явления многофункциональны и проявляются при определенном соотношении скоростей разных элементарных стадий. Поэтому при их кинетическом моделировании требуются дополнительный анализ и подбор констант скоростей важнейших реакций в диапазоне теоретически допустимых значений, не превосходящих экспериментальные погрешности. Другими словами, простая подстановка приближенных значений определяющих констант скоростей не всегда позволяет описать наблюдаемые критические явления. Для полученного механизма окисления н-гептана такая корректировка констант потребовалась применительно к ограниченному числу процессов - реакций н-гептана с гидропероксидными радикала-

МЕХАНИЗМЫ ОКИСЛЕНИЯ И ГОРЕНИЯ

N⁰	Реагент	$\Delta H^{\circ}_{f298},$ кал/моль	<i>S</i> ₂₉₈ , кал/(моль ∙ К)	<i>с</i> ₀ , кал/(моль · К)	с ₁ , кал/(моль · К ²)	с ₂ , кал∕(моль · К ³)	<i>с</i> ₃ , кал∕(моль · К ⁴)
73	C ₇ H ₁₆	-0.445E+05	0.103E+03	0.431E+00	0.159E+03	-0.862E+02	0.182E+02
74	C_7H_{15}	0.367E+04	0.106E+03	0.207E+01	0.150E+03	-0.840E+02	0.207E+02
75	$C_7H_{15}O_2$	-0.240E+05	0.125E+03	0.290E+01	0.175E+03	-0.106E+03	0.294E+02
76	$C_7H_{15}O_2H$	-0.597E+05	0.123E+03	0.258E+01	0.178E+03	-0.106E+03	0.288E+02
77	$C_7H_{15}O$	-0.262E+05	0.116E+03	0.178E+00	0.175E+03	-0.107E+03	0.315E+02
78	C ₆ H ₁₃ CHO	-0.649E+05	0.111E+03	0.112E+02	0.110E+03	-0.678E+01	-0.351E+02
79	C ₇ H ₁₃ CO	-0.297E+05	0.112E+03	0.112E+02	0.110E+03	-0.678E+01	-0.351E+02
80	C_7H_{14}	-0.148E+05	0.102E+03	0.237E+01	0.142E+03	-0.760E+02	0.158E+02
81	$C_{7}H_{13}$	0.293E+05	0.101E+03	0.298E+01	0.128E+03	-0.648E+02	0.127E+02

Таблица 1. Реагенты, включенные в механизм окисления и горения н-гептана

ми и реакции гептанового радикала с молекулярным кислородом.

ПРОВЕРКА МЕХАНИЗМА

Опыты по самовоспламенению газовых смесей

Предсказательную способность механизма проверили, сравнив результаты расчетов с известными экспериментальными данными для различных процессов окисления и самовоспламенения C_7H_{16} . Расчеты проводили по стандартной кинетической программе, использованной в работах [6–9].

Расчетная зависимость температуры от времени при самовоспламенении н-гептано-воздушной смеси для условий рис. 1 представлена на рис. 2. Такое развитие процесса, как на рис. 2, характерно для низких и умеренно высоких начальных температур. Первый ступенчатый подъем температуры связан с возникновением холодного пламени. По истечении некоторого времени за холодным пламенем возникает голубое, затем происходит горячий взрыв и температура возрастает до значений, превышающих 2500 К. Таким образом проявляется многостадийность самовоспламенения. Ускорение реакции в холодном пламени – следствие разветвления при распаде алкилгидропероксида (здесь – гидропероксид гептила $C_7H_{15}O_2H$) с образованием гидроксильной группы и оксирадикала. Голубое пламя возникает вследствие разветвления, вызванного распадом Н₂O₂. Горячий взрыв - следствие цепной разветвленной реакции атомарного водорода с молекулярным кислородом.

Многостадийность приводит к явлению отрицательного температурного коэффициента (ОТК) скорости реакции: при более высокой начальной

ХИМИЧЕСКАЯ ФИЗИКА том 29 № 12 2010

температуре суммарные задержки самовоспламенения τ_i оказываются больше, чем при низкой температуре. Это видно из рис. 3, на котором представлены задержки самовоспламенения стехиометрической смеси 1.86 об. % C_7H_{16} – воздух при начальном давлении $P_0 = 2.8-40$ атм и разных температурах. Точки на рис. 3 – опытные данные [12–18], а кривые – результаты расчетов. Видно, что экспериментальные и расчетные данные качественно согласуются. Как и в опытах, при высоких температурах (левее области ОТК) самовоспламенение внешне протекает как одностадийный процесс с экспоненциальным подъемом температуры со временем.

По данным, представленным на рис. 4, можно сравнить измеренные [4] и расчетные задержки самовоспламенения для богатой смеси 2.32 об. % C_7H_{16} – воздух при температуре $T_0 = 533$ К и относительно низких давлениях. Видно, что при давлении 0.4 атм и в опытах и в расчетах реакция окисления ограничена возникновением только холодного пламени. Давление 1.7 атм отделяет область холоднопламенного окисления от самовоспламенения с горячим взрывом. Здесь также можно видеть качественное согласие опытных и расчетных данных по задержкам холодного пламени τ_1 и по суммарным задержкам τ_i .

В соответствии с рис. 5, самовоспламенение смеси 2.32 об. % C_7H_{16} – воздух в области, в которой реализуется горячий взрыв, внешне воспринимается как одностадийный процесс с задержкой $\tau_i \sim 4$ с. Однако расчет показал, что за сотые доли секунды до самовоспламенения в смеси возникает и холодное и голубое пламя (в моменты времени 3.678 и 3.687 с соответственно). Это отчетливо видно по характеру изменения концен-

БАСЕВИЧ и др.

Табица 2. Механизм окисления и горения н-гептана

N⁰	Реакция	<i>А</i> , л, моль, с	<i>E/R</i> , K
1	$C_7H_{16} + O_2 = C_7H_{15} + HO_2$	0.400E+10	0.239E+05
2	$C_7H_{16} + OH = C_7H_{15} + H_2O$	0.630E+10	0.600E+03
3	$C_7H_{16} + H = C_7H_{15} + H_2$	0.930E+11	0.403E+04
4	$C_7H_{16} + O = C_7H_{15} + OH$	0.505E+04	0.277E+04
5	$C_7H_{16} + HO_2 = C_7H_{15} + H_2O_2$	0.600E+09	0.856E+04
6	$C_7H_{14} + H = C_7H_{15}$	0.189E+10	0.315E+03
7	$C_7H_{15} + O_2 = C_7H_{14} + HO_2$	0.220E+11	0.800E+04
8	$C_7H_{15} + OH = C_7H_{14} + H_2O$	0.600E+10	0.000E+00
9	$C_7H_{16} = H + C_7H_{15}$	0.359E+14	0.376E+05
10	$C_7H_{16} = CH_3 + C_6H_{13}$	0.404E+16	0.421E+05
11	$C_7H_{16} = C_2H_5 + C_5H_{11}$	0.195E+17	0.428E+05
12	$C_7H_{16} = C_3H_7 + C_4H_9$	0.157E+17	0.428E+05
13	$C_7H_{15} + H = C_7H_{14} + H_2$	0.600E+10	0.000E+00
14	$C_7H_{15} + CH_3 = C_7H_{14} + CH_4$	0.351E+09	-0.106E+03
15	$C_7H_{15} + C_2H_5 = C_7H_{14} + C_2H_6$	0.158E+11	0.466E+03
16	$C_7H_{15} + C_3H_7 = C_7H_{14} + C_3H_8$	0.138E+09	0.488E+03
17	$C_7H_{15} + C_4H_9 = C_7H_{14} + C_4H_{10}$	0.138E+09	0.488E+03
18	$C_7H_{15} + C_5H_{11} = C_7H_{14} + C_5H_{12}$	0.138E+09	0.488E+03
19	$C_7H_{15} + C_6H_{13} = C_7H_{14} + C_6H_{14}$	0.138E+09	0.488E+03
20	$C_7H_{15} + O = C_7H_{14} + OH$	0.200E+12	0.000E+00
21	$C_7H_{15} + O_2 = C_7H_{15}O_2$	0.400E+08	-0.500E+03
22	$C_7H_{16} + CH_3O_2 = C_7H_{15} + CH_3O_2H$	0.140E+11	0.650E+04
23	$C_7H_{16} + C_2H_5O_2 = C_7H_{15} + C_2H_5O_2H$	0.140E+11	0.650E+04
24	$C_7H_{16} + C_3H_7O_2 = C_7H_{15} + C_3H_7O_2H$	0.140E+11	0.650E+04
25	$C_7H_{16} + C_4H_9O_2 = C_7H_{15} + C_4H_{10}O_2$	0.140E+11	0.650E+04
26	$C_7H_{16} + C_5H_{11}O_2 = C_7H_{15} + C_5H_{12}O_2$	0.140E+11	0.650E+04
27	$C_7H_{16} + C_6H_{13}O_2 = C_7H_{15} + C_6H_{14}O_2$	0.140E+11	0.650E+04
28	$C_7H_{16} + C_7H_{15}O_2 = C_7H_{15} + C_7H_{16}O_2$	0.140E+11	0.650E+04
29	$C_7 H_{16} O_2 = C_7 H_{15} O + O H$	0.500E+16	0.200E+05
30	$C_7 H_{15} O = H_2 CO + C_6 H_{13}$	0.158E+15	0.797E+04
31	$C_7 H_{15} O = C H_3 C H O + C_5 H_{11}$	0.312E+15	0.113E+05
32	$C_7H_{15}O = C_2H_5CHO + C_4H_9$	0.302E+15	0.103E+05
33	$C_7 H_{15} O = C_4 H_8 O + C_3 H_7$	0.302E+15	0.103E+05
34	$C_7 H_{15} O = C_5 H_{10} O + C_2 H_5$	0.374E+15	0.103E+05
35	$C_7 H_{15} O = C_6 H_{12} O + C H_3$	0.775E+14	0.108E+05
36	$C_7 H_{15} O = C_7 H_{14} O + H$	0.688E+12	0.626E+04
37	$C_7H_{15}O_2 + H = C_7H_{15}O + OH$	0.236E+11	-0.161E+04
38	$C_7H_{15}O_2 + CH_3 = C_7H_{15}O + CH_3O$	0.364E+09	-0.166E+03
39	$C_7H_{15}O_2 + C_2H_5 = C_7H_{15}O + C_2H_5O$	0.827E+09	-0.649E+03
40	$C_7H_{15}O_2 + C_3H_7 = C_7H_{15}O + C_3H_7O$	0.630E+09	0.000E+00
41	$C_7H_{15}O_2 + C_4H_9 = C_7H_{15}O + C_4H_9O$	0.630E+09	0.000E+00
42	$C_7H_{15}O_2 + C_5H_{11} = C_7H_{15}O + C_5H_{11}O$	0.630E+09	0.000E+00
43	$C_7H_{15}O_2 + C_6H_{13} = C_7H_{15}O + C_6H_{13}O$	0.630E+09	0.000E+00
44	$C_7H_{15}O_2 + C_7H_{15} = C_7H_{15}O + C_7H_{15}O$	0.630E+09	0.000E+00
45	$C_7H_{15}O_2 + H_2CO = C_7H_{16}O_2 + HCO$	0.320E+09	0.564E + 04

МЕХАНИЗМЫ ОКИСЛЕНИЯ И ГОРЕНИЯ

N⁰	Реакция	<i>А</i> , л, моль, с	<i>E/R</i> , K
46	$C_{7}H_{15}O_{2} + CH_{2}CHO = C_{7}H_{12}O_{2} + CH_{2}CO$	0.315E+09	0.560E+04
47	$C_7H_{15}O_2 + C_2H_5CHO = C_7H_{16}O_2 + C_2H_5CO$	0.315E+09	0.554E+04
48	$C_7H_{15}O_2 + C_2H_5O_1O = C_7H_{16}O_2 + C_2H_5O_2$	0.315E+09	0.554E+04
49	$C_7H_{15}O_2 + C_5H_{10}O = C_7H_{10}O_2 + C_5H_{0}O$	0.315E+09	0.554E+04
50	$C_7H_{15}O_2 + C_6H_{12}O = C_7H_{16}O_2 + C_6H_{11}O$	0.315E+09	0.554E+04
51	$C_7H_{15}O_2 + C_7H_{14}O = C_7H_{16}O_2 + C_7H_{12}O$	0.315E+09	0.554E+04
52	$C_7H_{15} + HO_2 = C_7H_{15}O + OH$	0.300E+11	0.000E+00
53	$C_7H_{15} + O_2 = C_7H_{14}O + OH$	0.400E+10	0.900E+04
54	$C_7H_{15} + C_2H_5 = C_7H_{16} + C_2H_4$	0.625E+09	0.335E+03
55	$C_7H_{15} + C_3H_7 = C_7H_{16} + C_3H_6$	0.190E+10	0.000E+00
56	$C_7H_{15+}C_4H_9 = C_7H_{16} + C_4H_8$	0.190E+10	0.000E + 00
57	$C_7H_{15} + C_5H_{11} = C_7H_{16} + C_5H_{10}$	0.190E+10	0.000E + 00
58	$C_7H_{15} + C_6H_{13} = C_7H_{16} + C_6H_{12}$	0.190E+10	0.000E + 00
59	$C_7H_{15} + C_7H_{15} = C_7H_{16} + C_7H_{14}$	0.190E+10	0.000E + 00
60	$C_7H_{15} + O_2 = H_2CO + C_6H_{13}O$	0.400E+11	0.700E + 04
61	$C_7H_{15} + O_2 = CH_3CHO + C_5H_{11}O$	0.400E+11	0.700E + 04
62	$C_7H_{15} + O_2 = C_2H_5CHO + C_4H_9O$	0.400E+11	0.700E + 04
63	$C_7H_{15} + O_2 = C_4H_8O + C_3H_7O$	0.400E+11	0.700E + 04
64	$C_7H_{15} + O_2 = C_5H_{10}O + C_2H_5O$	0.400E+11	0.700E + 04
65	$C_7H_{15} + O_2 = C_6H_{12}O + CH_3O$	0.400E+11	0.700E + 04
66	$C_7H_{15} + OH = CH_3 + C_6H_{13}O$	0.184E+11	-0.194E+04
67	$C_7H_{15} + OH = C_2H_5 + C_5H_{11}O$	0.891E+11	0.417E+03
68	$C_7H_{15} + OH = C_3H_7 + C_4H_9O$	0.719E+11	0.413E+03
69	$C_7H_{15} + OH = C_4H_9 + C_3H_7O$	0.719E+11	0.413E+03
70	$C_7 H_{15} + OH = C_5 H_{11} + C_2 H_5 O$	0.117E+12	-0.232E+03
71	$C_7H_{15} + OH = C_6H_{13} + CH_3O$	0.107E+11	0.480E+03
72	$C_7 H_{15} + H = C H_3 + C_6 H_{13}$	0.388E+11	0.546E+03
73	$C_7 H_{15} + H = C_2 H_5 + C_5 H_{11}$	0.187E+12	0.318E+03
74	$C_7 H_{15} + H = C_3 H_7 + C_4 H_9$	0.151E+12	0.314E+03
75	$C_7H_{15} + H = CH_2 + C_6H_{14}$	0.423E + 08	0.302E+04
76	$C_7 H_{15} + H = C_2 H_4 + C_5 H_{12}$	0.722E + 07	-0.641E+04
77	$C_7 H_{15} + H = C_3 H_6 + C_4 H_{10}$	0.177E+08	-0.675E+04
78	$C_7H_{15} + H = C_4H_8 + C_3H_8$	0.177E+08	-0.675E+04
79	$C_7H_{15} + H = C_5H_{10} + C_2H_6$	0.251E+10	-0.677E+04
80	$C_7H_{15} + H = C_6H_{12} + CH_4$	0.116E+08	-0.711E+04
81	$C_7H_{15} + O = H + C_7H_{14}O$	0.702E+09	0.565E+03
82	$C_7H_{15} + O = CH_3 + C_6H_{12}O$	0.790E+11	-0.952E+03
83	$C_7H_{15} + O = C_2H_5 + C_5H_{10}O$	0.381E+12	-0.118E+04
84	$C_7H_{15} + O = C_3H_7 + C_4H_8O$	0.308E+12	-0.118E+04
85	$C_7H_{15} + O = C_4H_9 + C_2H_5CHO$	0.308E+12	-0.118E+04
86	$C_7H_{15} + O = C_5H_{11} + CH_3CHO$	0.318E+12	-0.111E+04
87	$C_7 \pi_{15} + 0 = C_6 \pi_{13} + H_2 C 0$	U.162E+12	-0.352E+01
88	$C_7 H_{13} O + HO_2 = C_7 H_{14} O + O_2$	0.530E+08	0.000E+00
89	$C_7 \pi_{14} O + O H = C_7 \pi_{13} O + H_2 O$	0.100E+11	0.000E+00
90	$C_7 \Pi_{14} O + \Pi = C_7 \Pi_{13} O + \Pi_2$	$0.140E \pm 11$	0.103E+04

Табица 2. Продолжение

Табица 2. Окончание

Nº	Реакция	<i>А</i> , л, моль, с	<i>E/R</i> , K	
91	$C_7H_{14}O + O = C_7H_{13}O + OH$	0.568E+10	0.780E+03	
92	$C_7H_{14}O + HO_2 = C_7H_{13}O + H_2O_2$	0.600E+09	0.500E+04	
93	$C_6H_{13} + HCO = C_7H_{14}O$	0.223E+11	0.352E+01	
94	$C_6H_{13} + CO = C_7H_{13}O$	0.187E+09	0.242E+04	
95	$C_7H_{13}O + H = C_6H_{13} + HCO$	0.485E+10	0.240E+04	
96	$C_7H_{13}O + O = C_6H_{13}O + CO$	0.369E+10	0.646E+03	
97	$C_7H_{14} + OH = C_7H_{13} + H_2O$	0.900E+11	0.325E+04	
98	$C_7H_{13} + H_2 = C_7H_{14} + H$	0.853E+11	0.533E+04	
99	$C_7H_{13} + O_2 = C_5H_{11}O_2 + C_2H_2$	0.242E+11	0.396E+04	
100	$C_7H_{14} + HCO = C_7H_{13} + H_2CO$	0.600E+11	0.900E+04	
101	$C_7H_{14} + CH_3 = C_7H_{13} + CH_4$	0.107E+09	0.268E+04	
102	$C_7H_{14} + C_2H_5 = C_7H_{13} + C_2H_6$	0.481E+10	0.325E+04	
103	$C_7H_{14} + C_3H_7 = C_7H_{13} + C_3H_8$	0.420E+08	0.328E+04	
104	$C_7H_{14} + C_4H_9 = C_7H_{13} + C_4H_{10}$	0.420E+08	0.328E+04	
105	$C_7H_{14} + C_5H_{11} = C_7H_{13} + C_5H_{12}$	0.420E+08	0.328E+04	
106	$C_7H_{14} + C_6H_{13} = C_7H_{13} + C_6H_{14}$	0.420E+08	0.328E+04	
107	$C_5H_{11} + C_2H_2 = C_7H_{13}$	0.141E+10	0.143E+04	
108	$C_7 H_{14} = C_2 H_3 + C_5 H_{11}$	0.390E+14	0.379E+05	
109	$C_7 H_{14} = C_3 H_5 + C_4 H_9$	0.113E+14	0.446E+05	
110	$C_7H_{14} = C_4H_7 + C_3H_7$	0.113E+14	0.446E+05	
111	$C_7 H_{14} = C_5 H_9 + C_2 H_5$	0.140E+14	0.446E+05	
112	$C_7H_{14} = C_6H_{11} + CH_3$	0.289E+13	0.439E+05	
113	$C_7H_{14} + O_2 = C_7H_{13} + HO_2$	0.600E+11	0.236E+05	
114	$C_7H_{14} + O = C_6H_{13} + HCO$	0.404E+10	0.226E+03	
115	$C_7H_{13} + OH = C_6H_{13} + HCO$	0.485E+10	-0.352E+01	
116	$C_7 H_{13} + H = C_5 H_{12} + C_2 H_2$	0.917E+10	0.362E+03	
117	$C_7H_{13} + O = C_6H_{13} + CO$	0.485E+10	-0.352E+01	
118	$C_7H_{13} + O = C_5H_{11}O + C_2H_2$	0.405E+11	-0.662E+02	
119	$CH_3 + C_6H_{13} = C_7H_{14} + H_2$	0.248E+14	0.191E+05	
120	$C_2H_5 + C_5H_{11} = C_7H_{14} + H_2$	0.513E+13	0.193E+05	
121	$C_3H_7 + C_4H_9 = C_7H_{14} + H_2$	0.636E+13	0.193E+05	
122	$C_7H_{14} + H + H = CH_3 + C_6H_{13}$	0.145E+07	-0.500E+04	
123	$C_7H_{14} + H + H = C_2H_5 + C_5H_{11}$	0.701E+07	-0.523E+04	
124	$C_7H_{14} + H + H = C_3H_7 + C_4H_9$	0.566E+07	-0.524E+04	
(далее следует механизм окисления и горения $C_1 - C_6$)				

Рис. 4. Зависимости задержек самовоспламенения от давления для смеси 2.32 об. % C_7H_{16} -воздух при начальной температуре T_0 = 533 К: τ_1 – задержки холодного пламени, τ_i – суммарные задержки; точки – опыты [4], кривые – расчет.

траций пероксидов и гидроксида (рис. 6 и рис. 7 соответственно). Поскольку в экспериментах, как правило, измеряются интегральные характеристики процесса, такое разделение стадий может не обнаруживаться по разным причинам (например, вследствие температурных неоднородностей). В действительности же стадийность всегда реализуется.

Моделирование окисления *н*-гептана в условиях опытов [4] позволяет количественно вос-

Рис. 5. Расчетная зависимость температуры от времени при самовоспламенении смеси: 2.32 об. % C_7H_{16} -воздух: $T_0 = 533$ K, $P_0 = 4.1$ атм.

произвести экспериментальные регистрации давления при многостадийном самовоспламенении с возникновением холодных и голубых пламен (моделирование такого рода проведено нами ранее в [19] с помощью расширенного полуэмпирического механизма). Данные об экспериментальной регистрации голубых пламен при окислении *н*-гептана приведены в работе [3]. Совсем недавно голубое пламя зарегистрировано в разнообразных топливных смесях, содержащих *н*-гептан [20], однако авторы статьи [20] дают голубому пламени новое название – "предвоспламенение" (preignition) – и предлагают сложный

Рис. 6. Расчетные зависимости концентраций пероксидов от времени при самовоспламенении смеси 2.32 об. % C_7H_{16} -воздух: $T_0 = 533$ K, $P_0 = 4.1$ атм.

Рис. 7. Расчетная зависимость концентрации OH-групп от времени при самовоспламенении смеси 2.32 об. % C_7H_{16} -воздух: $T_0 = 533$ K, $P_0 = 4.1$ атм.

кинетический механизм его возникновения с участием реакций с ароматическими структурами, который в корне отличается от предложенного нами.

Опыты по распространению ламинарного пламени

Для дальнейшей проверки кинетического механизма провели расчеты по определению скорости ламинарного пламени $u_{\rm n}$ в *н*-гептано-воздушной смеси при нормальных условиях (атмосфер-

Рис. 8. Зависимость скорости ламинарного пламени u_n от концентрации C_7H_{16} в смеси с воздухом при нормальных начальных условиях: кривая – расчет, точки – эксперимент; $\bigcirc -[22], \square -[23], \bullet -[24], \blacktriangledown -[25].$

ное давление, начальная температура $T_0 = 293$ К). Расчеты проводили по методике [21]. Сравнение результатов расчетов и экспериментов можно провести и по данным, представленным на рис. 8 [22–25].

Опыты по самовоспламенению капель

Полученный детальный кинетический механизм применили также к расчету самовоспламенения и горения капель н-гептана в условиях микрогравитации. В основе расчета – одномерные нестационарные уравнения сохранения массы, химических компонентов и энергии для газовой и конденсированной фаз с сопряжением решений на сферической поверхности капли. Детальное описание математической модели и методики расчета приведены в работах [26, 27]. Вокруг капли задавали постоянную начальную температуру воздуха T_0 , а начальную температуру жидкости принимали равной 293 К. Радиус расчетной области R считали достаточно большим по сравнению с начальным радиусом капли r_0 . В соответствии с моделью [26, 27], любому выбранному значению *R* соответствует определенное значение коэффициента избытка горючего Ф в однородной монодисперсной капельной газовзвеси.

По истечении некоторого времени (периода индукции самовоспламенения) в газе на некотором расстоянии от центра капли происходило самовоспламенение. При решении задачи для одиночных капель разного размера и для ка-

Рис. 9. Расчетные зависимости максимальной температуры газа от времени при самовоспламенении стехиометрической ($\Phi = 1$) газовзвеси капель *н*-гептана в воздухе при давлении $P_0 = 20$ атм и разных начальных температурах воздуха: начальный диаметр капель $d_0 = 60$ мкм.

Начальный диаметр	Темпе- ратура воздуха, К	Период индукции самовос- пламенения, с		
капли, МКМ		эксперимент	расчет	
700	1000	0.30 [28]	0.18	
1000	960	0.58 [29]	0.27	

Таблица 3. Период индукции при самовоспламенении индивидуальных капель *н*-гептана при давлении P = 1 атм

пельных газовзвесей (в предположении однородности и монодисперсности газовзвеси) в широком диапазоне давлений, а также начальных температур воздуха и начальных составов смеси Φ обнаружилось, что в определенных условиях при самовоспламенении капель проявляется такая же многостадийность процесса окисления, как и при самовоспламенении газовой смеси (рис. 9).

Сравнить расчетные периоды индукции самовоспламенения и измеренные значения для одиночных капель в условиях микрогравитации можно по данным, представленным в табл. 3.

ЗАКЛЮЧЕНИЕ

В работе построен новый неэмпирический детальный механизм окисления и горения н-гептана. Важнейшая особенность механизма – проявление стадийности в виде холодных и голубых пламен при низкотемпературном самовоспламенении. Выполнены расчеты самовоспламенения и горения газовых смесей и капель н-гептана в широком диапазоне начальных условий, и проведено сравнение результатов расчетов с экспериментальными данными. В целом, получено удовлетворительное качественное и количественное согласие между результатами расчетов и опытов. Это означает, что использованный в работе неэкстенсивный принцип построения кинетических механизмов с целевым ограничением многообразия продуктов и реакций, но сохранением основных каналов процесса и принципиально важных типов элементарных актов, по-видимому, применим к описанию окисления и горения н-гептана.

Работа выполнена в рамках Государственного контракта № П502 и при финансовой поддержке Российским фондом фундаментальных исследований (грант 08-08-00068).

СПИСОК ЛИТЕРАТУРЫ

- Chevalier C., Louessard P., Muller U.C., Warnatz J. // Joint Meeting Sov. Ital. Sections Comb. Inst. Pisa: The Combust. Inst., 1990. P. 5.
- 2. Buda F., Bounaceur R. et al. // Combust. and Flame. 2005. V. 142. P. 170.

2009. Т. 28. № 8. С. 59. 9. Басевич В.Я., Беляев А.А., Фролов С.М. // Там же.

2007. T. 26. № 7. C. 37.

1946. T. 20. C. 13.

T. 76. № 9. C. 927.

2010. T. 29. \mathbb{N} 7. C. 71.

8. Басевич В.Я., Беляев А.А., Фролов С.М. // Там же.

3. Соколик А.С. Самовоспламенение, пламя и детона-

4. Соколик А.С., Янтовский С.А. // Журн. физ. химии.

5. Басевич В.Я., Фролов С.М. // Успехи химии. 2007.

Басевич В.Я., Веденеев В.И., Фролов С.М., Романович Л.Б. // Хим. физика. 2006. Т. 25. № 11. С. 87.
 Басевич В.Я., Беляев А.А., Фролов С.М. // Там же.

ция в газах. М.: Изд-во АН СССР, 1960.

- 10. Curran H.J., Gaffuri P., Pitz W.J., Westbrook C.K. // Combust. and Flame. 1998. V. 114. P. 149.
- 11. Chaos M., Kazakov A., Zhao Z., Dryer F.I. // Int. J. Chem. Kinet. 2007. V. 39. P. 399.
- Rogener H. // Z. Elektrochem. und Angew. Phys. Chem. 1949. B. 53. S. 389.
- 13. Taylor C.F., Taylor E.S., Livengood J.S. et al. // SAE Quart. Trans. 1950. V. 4. P. 232.
- 14. *Ciezki H., Adomeit G. //* Proc. 16th Sympos. (Intern.) on Shock Tubes and Waves. Niagara Falls, 1987. P. 481.
- 15. Poppe Ch., Schreber M., Griffith J.F. // Proc. Joint Meeting British and German Sections of The Combustion Institute. Kambridge, 1993. P. 1993.
- Ciezki H., Adomeit G. // Combust. and Flame. 1993. V. 93. P. 421.
- Minetti R., Carlier M., Ribaucour M. et al. // Ibid. 1995.
 V. 102. P. 298.
- Gauthier B.M., Davidson D.F., Hanson R.K. // Ibid. 2004. V. 139. P. 300.
- 19. Басевич В.Я., Веденеев В.И., Фролов С.М., Романович Л.Б. // Хим. физика. 2004. Т. 23. № 1. С. 50.
- Machrafi H., Cavadias S. // Combust. and Flame. 2008. V. 155. P. 557.
- Беляев А.А., Посвянский В.С. // Алгоритмы и программы. Информ. бюл. гос. фонда алгоритмов и программ СССР. 1985. № 3. С. 35.
- 22. Gerstein M., Levin O., Wang E.L. // J. Amer. Chem. Soc. 1951. V. 73. № 1. P. 418.
- 23. *Gibbs G.J., Calcote H.F.* // J. Chem. Eng. Data. 1959. V. 4. P. 226.
- 24. *Davis S.G., Law C.K.* // Proc. Combust. Institute. 1998. 27(1). P. 521.
- 25. *Hyang Y., Sung C.J., Eng J.A.* // Combust. and Flame. 2004. V. 139. P. 239.
- Фролов С.М., Посвянский В.С., Басевич В.Я. и др. // Хим. физика. 2004. Т. 23. № 4. С. 75.
- 27. Frolov S.M., Basevich V.Ya., Belyaev A.A. et al. // In: Combustion and Pollution: Environmental Impact / Eds. G.D. Roy, S.M. Frolov, A.M. Starik. Moscow: Torus Press, 2005. P. 117.
- Takei M., Kobayashi H., Niioka T. // Int. J. Micrograv. Res. and Appl. Micrograv. Sci. Technol. 1993. V. VI/3. P. 184.
- Niioka T., Kobayashi H., Mito D. // IVTAM Sympos. on Mechanics and Combustion of Droplet and Sprays. Tainan. 1994. P. 367.