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Abstract. A novel method in CFD derived from the SIMPLE algorithm is pre-
sented. Instead of solving the linear equations for each variable and the pressure-
correction equation separately in a so-called segregated manner, it relies on the so-
lution of a linear system that comprises the discretisation of enthalpy and pressure-
correction equation which are linked through physical coupling terms. These coupling
terms reflect a more accurate approximation of the density update with respect to
thermodynamics (compared to standard SIMPLE method). We show that the novel
method is a reasonable extension of existing CFD techniques for variable density flows
based on SIMPLE. The novel method leads to a reduction of the number of itera-
tions of SIMPLE which translates in many – but not in all – cases to a reduction in
computing time. We will therefore demonstrate practical advantages and restrictions
in terms of computational efficiency for industrial CFD applications in the field of
piston engine simulations.
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1 Introduction

The simulation of flow inside piston engine cylinders and inside the attached
parts of the engine is a field where the application of CFD (computational fluid
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2 M. Emans, Z. Žunič, B. Basara and S. Frolov

dynamics) has reached a particular maturity. Simulations are used to assist
the development process of combustion engines. For many different problems,
particular models have been developed. All of them have in common that they
rely on a solution of the Navier–Stokes equations to obtain a velocity field,
a pressure field, and a temperature distribution. Many models are coupled
in two ways to this kernel of the simulation tool. On the one hand, they
use these data as input, e.g., if they require the velocity field to compute
the distribution of particles for the prediction of soot formation; on the other
hand, they manipulate the flow field, e.g., if a combustion model significantly
contributes to the sources in the energy equation.

With respect to commercial codes in the industrial development process, an
important class of methods providing an appropriate approximation of the so-
lution of the Navier–Stokes equations for this purpose masters the non-linearity
of the system as well as the coupling of the momentum equations and the con-
tinuity equation by iterative algorithms derived from SIMPLE (“semi-implicit
method for pressure-linked equations”). Commercial software solutions em-
ploying these methods are available such that, ideally, engineers no longer have
to bother about the flow solution but can focus on the attached models. For
this, the flow solution must be obtained reliably and fast; moreover, it should
restrict the choice of the parameters of the simulation such as time step and
spatial resolution as little as possible. Although acceptable methods exist,
there is still space for improvement, and in particular a faster computation of
the flow solution will always be appreciated.

Many ways have been proposed to accelerate the convergence of the SIM-
PLE algorithm in the genuine formulation of Patankar and Spalding [22] that
tends to be unsatisfactory in some situations. Among the most important ones
are SIMPLEC and PISO, see van Doormal and Raithby [10], for an overview.
Whereas genuine SIMPLE requires the solution of one linear system per un-
known (e.g. velocity component or pressure) and iteration, the enhanced meth-
ods require the solution of more than one linear system per unknown and
iteration. The size of the systems always corresponds to the number of dis-
cretisation points or finite volumes; despite occasional convergence problems
these methods are applied with great success in many important engineering
applications.

Coupling equations and calculating two or more variables at the same time
is an alternative to obtain accelerated convergence compared to the established
approaches that are referred to as segregated. Apparently, until very recently
one tends to prefer segregated approaches in CFD simulation tools for engineer-
ing applications. For the simulation of essentially incompressible flows in an
industrial context, an appropriate method that couples the momentum equa-
tions and the continuity equation has been described by Chen et al. [5] not
earlier than 2010. The more rapid convergence of the coupled method make
these techniques in particular attractive for complex simulations where, due to
the cost of physical models attached to (and interfering with) the fluid flow
solution, each single iteration is expensive. The coupling of variables shifts the
effort to obtain a solution of the coupled system of the Navier–Stokes equations
from the non-linear or outer iteration, e.g. the iterations of SIMPLE, to the
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Pressure-enthalpy coupling for engine flow 3

solution of larger and more complex linear systems. In particular with regard
to large-scale computations it is not sufficient only to report on rapid conver-
gence of these methods. It is also necessary to show that appropriate methods
to solve these linear systems efficiently are available such as e.g. Chen et al.
[5] do. Furthermore, for high-resolution time-dependent simulations of engine
flow problems, these methods should be shown to work efficiently on parallel
computers.

For compressible flows the pressure-correction equation (that represents the
mass conservation in SIMPLE algorithm) depends not only on the velocity
field, but also on the density field, see Demirdžić et al. [9]. The segregated
methods improve the velocity update with respect to the flow field, but the
error introduced by the density field, calculated based on the pressure of the
previous iteration, is not reduced. Since the density depends strongly on the
temperature, this error can be large if the actual guess of the temperature is
not yet close to the solution. As a matter of fact, the right-hand side of the
pressure-correction equation strongly depends on the enthalpy changes through
the density field and, at the same time, the pressure change as a result of this
pressure-correction equation contributes significantly to the right-hand side of
the enthalpy equation. A stronger link between enthalpy and pressure allows
to employ a better approximation to the density in the pressure-correction
equation. This motivated us to couple these two equations within the context
of the SIMPLE algorithm. Since the coupled linear system is larger and since
it has less favourable properties, one has to be aware that the gain through
faster convergence does not always translate into a reduced computing time.

In this article we sketch the main ideas of a pressure-enthalpy coupling
procedure extending the SIMPLE algorithm where the focus lies on the prop-
erties of the new algorithm that are relevant to predict its efficiency. Then we
will present results of three benchmarks, each representing an important class
of problems in engine simulation; we will discuss convergence properties and
performance in terms of wall clock times.

2 SIMPLE-Based Methods for CFD

After stating the governing equations at the beginning of this section, we will
deduce SIMPLE algorithm as a factorisation preconditioner for incompressible
problems. The discussion of the extension for compressible flows is supposed
to highlight that the pressure-enthalpy coupling is a second important step in
the same direction.

2.1 Governing equations

The Navier–Stokes equations consist of the momentum equations, the con-
tinuity equation, and an energy equation. These equations read (in non-
conservative formulation)

ρ

(
∂~v

∂t
+ (~v ◦ ~∇)~v

)
= −~∇p+ ~∇τ + ρ~fe, (2.1)

Math. Model. Anal., 17(1):1–20, 2012.
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4 M. Emans, Z. Žunič, B. Basara and S. Frolov

~∇ ◦ (ρ~v) = −∂ρ
∂t
, (2.2)

∂(ρh)

∂t
+ ~∇ ◦ (ρ~vh) + ~∇ ◦ (λ~∇(cph)) =

∂p

∂t
− ρ~v ∂~v

∂t
− ρ~v

2
◦ ~∇~v 2

+ ~∇ ◦ (τ ◦ ~v) + ρ~fe ◦ ~v + qh. (2.3)

The unknown functions are the velocity field ~v, the pressure p, the static en-
thalpy h and the density ρ. Further, the thermal conductivity is denoted by λ,
the heat capacity by cp, the external body force by ~fe, and the external heat
source by qh; τ is the sheer strain tensor reflecting the diffusion term.

The system is completed by a relation between density and two thermody-
namic variables, e.g. pressure and temperature for ideal gas ρ = p/RT , where
R is the gas constant and T = T (h) the thermodynamic temperature.

For the numerical treatment, a discretisation in space and in time is re-
quired. With conventional finite-volume techniques the discretisation of these
equations leads to such a system:

A~u+M~p = ~b,

C~u = ~c,

G~h = ~g.

The discrete unknown velocity field is denoted by ~u, the pressure field by ~p, and
the enthalpy field by ~h; the discrete density field is ~%. A = A(~u, ~%) denotes the
discretised operator that acts on the velocity field in the momentum equations,
i.e. it expresses convective, diffusive, and inertia components stemming from
the time derivative; the part of the discretised time derivative depending on the
velocity of the previous time step(s) forms, together with the discretised body

force term, the vector ~b. Note that both, A and ~b therefore depend on the time
even if the body force is constant. M is the discretisation of the pressure term,
C = C(~%) represents the discretised continuity equation, ~c the corresponding
right-hand side; the energy equation is represented by G = G(~u, ~%) and ~g.

2.2 SIMPLE for incompressible flows

The SIMPLE algorithm was first employed for incompressible flow problems.
In this case the problem can be expressed as(

A M
C 0

)(
~u
~p

)
=

(
~b
~c

)
.

SIMPLE is an iterative method; the iteration count is denoted by m. The
operator A(~u, ~%) is linearised in such a way that for the evaluation of its entries
one uses simply the most recent values. Through A(m) := A(~u(m), ~% (m)) we
express the operator that has been evaluated with the values calculated in
iteration m. With the splitting ~p (m+1) = ~p (m) + ~p ′ the previous equation is
equivalently rewritten as(

A(m) M
C 0

)(
~u
~p ′

)
=

(
~b−M~p (m)

~c

)
.
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Pressure-enthalpy coupling for engine flow 5

The SIMPLE method relies on a factorisation of this system (the superscript
of A is dropped for the moment):(

A M
C 0

)
=

(
A 0
C S

)
·
(
I A−1M
0 I

)
.

This is exploited to describe a forward substitution(
A 0
C S

)(
~u∗

~p ∗

)
=

(
~b−M~p (m)

~c

)
and a backward substitution(

I A−1M
0 I

)(
~u
~p ′

)
=

(
~u∗

~p ∗

)
,

where ~u∗ and ~p ∗ denote auxiliary variables. From this the following equations
can be extracted:

A(m)~u∗ = ~b−M~p (m), (2.4)

S~p ′ = ~c− C~u∗, (2.5)

~u(m+1) = ~u∗ −A(m)−1M~p ′. (2.6)

In SIMPLE one uses Ã(m) := diag(A(m)) instead of A (m) in Eq. (2.6) and
S̃(m) := −CÃ(m)−1M instead of S in Eq. (2.5) and one employs this scheme as
a preconditioner to a Richardson iteration; the resulting scheme is Algorithm 1.

Algorithm 1 SIMPLE algorithm for incompressible flows

1: initialise, m = 0
2: while <not converged> do
3: solve A(m)~u∗ = ~b−M~p (m)

4: solve S̃(m)~p ′ = ~c− C~u∗

5: ~u (m+1) = ~u∗ − Ã(m)−1M~p ′

6: ~p (m+1) = ~p (m) + ~p ′

7: end while

The iterative procedure is necessary because of two aspects. First, the cou-
pling of the variables needs to be handled iteratively since, initially, after step 3
of Algorithm 1, the momentum equations with the pressure of the previous it-
eration, but not necessarily the continuity equation, are satisfied; after step 5
the continuity equation, but not the momentum equations are satisfied. In
the course of the iteration the solution is driven to satisfy both constraints.
Second, the system is nonlinear, i.e. the operator A depends on ~u such that
~u (m+1) 6= ~u (m) implies A(m+1) 6= A(m). Therefore a re-evaluation of the ele-
ments of A at the beginning of each iteration is necessary.

2.3 SIMPLE for compressible flows

For flows with a variable density that depends on pressure and temperature
the system needs to be extended since the energy equation and the material

Math. Model. Anal., 17(1):1–20, 2012.
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6 M. Emans, Z. Žunič, B. Basara and S. Frolov

properties need to be included. With ~h(m+1) = ~h(m) + ~h′, a naive approach
would be to write

A(m) M 0 0
C(m) 0 0 0

0 0 G(m) 0
0 0 0 X



~u
~p ′

~h′

~%

 =


~b−M~p (m)

~c

~g −G~h(m)

~y

 , (2.7)

to apply a similar factorisation
A M 0 0
C 0 0 0
0 0 G 0
0 0 0 X

 =


A 0 0 0
C S 0 0
0 0 G 0
0 0 0 X

 ·

I A−1M 0 0
0 I 0 0
0 0 I 0
0 0 0 I

 , (2.8)

and to deduce an algorithm analogous to Algorithm 1. A decisive improvement
to this was suggested by Demirdžić et al. [9]. They substitute the dependence
of the density on pressure into the continuity equation: for the time derivative
of the density on the right-hand side of the continuity equation in equation
(2.7) they write

∂ρ

∂t
=
ρ′ + ρ(m) − ρ0

∆t

(ρ0 is the density of the previous time step) and express the density update as
multiple of the pressure update as

ρ′ =
1

RT
~p ′, (2.9)

since according to ideal gas law

dρ ≈ ∂ρ

∂p

∣∣∣∣
T

dp =
1

RT
dp.

This introduces a dependency on the pressure into the continuity equation
and improves the convergence significantly. The discretised system where this
dependency is expressed by the linear operator Sp then reads

A(m) M 0 0
C Sp 0 0
0 0 G 0
0 0 0 X



~u
~p ′

~h′

~%

 =


~b−M~p (m)

~c

~g −G~h(m)

~y

 .

The method of Demirdžić et al. [9] uses this for a factorisation as in Eq. (2.8) to
construct the SIMPLE algorithm for compressible flows, Algorithm 2. The ad-
vantage of the method of Demirdžić et al. is not only an improved robustness,
see Demirdžić et al. [9], but also a more rapid convergence, e.g. the algorithm
using (2.8) to construct the preconditioner requires 12 247 accumulated itera-
tions in our example II with time resolution t0 (see Section 3.2) whereas with
Demirdžić’s method this number is only 8224. In the formulation of Algo-
rithm 2, the enthalpy equation is solved for the enthalpy update ~h′ in step 8
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Pressure-enthalpy coupling for engine flow 7

and the enthalpy is updated in step 9; it is mathematically equivalent to solve
G~h(m+1) = ~g for ~h(m+1) in step 8 and skip step 9. In any event, an iteration
is also necessary because of both, the coupling of the variables and the non-
linearity. The operator G in step 8 of Algorithm 2 is evaluated based on the
already updated velocity, but the density is taken from the previous time step,
therefore we use the symbol G(m+1/2) := G(~u(m+1), ~% (m)).

Algorithm 2 SIMPLE algorithm for compressible flows

1: initialise, m = 0
2: while <not converged> do
3: compute ~% (m) = f(~p (m),~h(m))

4: solve A(m)~u∗ = ~b−M~p (m)

5: solve (S̃(m) + Sp)~p ′ = ~c− C~u∗

6: ~u(m+1) = ~u∗ − Ã(m)−1M~p ′

7: ~p (m+1) = ~p (m) + ~p ′

8: solve G(m+1/2)~h′ = ~g −G(m+1/2)~h(m)

9: ~h (m+1) = ~h (m) + ~h ′

10: end while

Equation (2.9) reflects only the dependence of the density on the pressure,
but the density depends, as all extensive thermodynamic quantities, on two
other quantities. The method we propose considers also the dependence of
the density on the temperature at the point where the density on the right
hand-side of the continuity is substituted. We write instead of equation (2.9)

ρ ′ =
1

RT
(p′ + kh′) ,

where k is defined as k := −p/(cpT ). Through this, the pressure-correction

equation contains a contribution of enthalpy ~h in the form of a linear operator
Sh. Moreover, the derivative of pressure with respect to time in the equation
(2.3) can be written as

∂p

∂t
=
p′ + p(m) − p0

∆t
,

where p0 is the pressure at the previous time step. With this the pressure
update is considered in the energy equation which results in a linear contri-
bution of the pressure to the energy equation which we denote as Gp. If the
enthalpy contribution in the continuity equation and the pressure contribution
to the energy equation are moved to the left-hand side of these equations, the
discretised system becomes

A (m) M 0 0
C Sp Sh 0
0 Gp G 0
0 0 0 X



~u
~p ′

~h′

~%

 =


~b−M~p (m)

~c

~g −G~h(m)

~y

 .

It can be factorised as
A M 0 0
C Sp Sh 0
0 Gp G 0
0 0 0 X

 =


A 0 0 0
C S+Sp Sh 0
0 Gp G 0
0 0 0 X

 ·

I A−1M 0 0
0 I 0 0
0 0 I 0
0 0 0 I

 .

Math. Model. Anal., 17(1):1–20, 2012.

D
ow

nl
oa

de
d 

by
 [

M
ax

im
ili

an
 E

m
an

s]
 a

t 0
6:

13
 2

2 
Fe

br
ua

ry
 2

01
2 



8 M. Emans, Z. Žunič, B. Basara and S. Frolov

The iterative algorithm exploiting this is Algorithm 3. Note that here the
velocity is not yet updated when the operator G is evaluated; therefore here
G(m) := G(~u(m), ~% (m)) is used.

Algorithm 3 SIMPLE algorithm with pressure-enthalpy coupling

1: initialise, m = 0
2: while <not converged> do
3: compute ~% (m) = f(~p (m),~h(m))

4: solve A(m)~u∗ = ~b−M~p (m)

5: solve

(
S̃(m)+Sp Sh

Gp G(m)

)(
~p ′

~h′

)
=

(
~c− C~u∗

~g

)
6: ~u(m+1) = ~u∗ − Ã(m)−1M~p ′

7: ~p (m+1) = ~p (m) + ~p ′

8: ~h (m+1) = ~h (m) + ~h ′

9: end while

While in conventional SIMPLE separated linear equation systems for each
of the individual variables (velocity components, pressure-correction, enthalpy)
are solved, this pressure-enthalpy coupling scheme requires the solution of the
coupled linear system in step 5 of Algorithm 3. This system has twice as many
unknowns as the scalar systems of the segregated method and it is nonsym-
metric; it has the same properties as discretised problems of mixed elliptic-
hyperbolic type usually have. Its numerical treatment is more difficult than
that of the scalar systems. The advantage of the pressure-enthalpy coupling is
that it enhances the convergence of the iteration since it couples both variables
more closely in a common linear system. Since the iteration is also due to the
non-linearity of the system, a significant improvement will not be observed in
every individual case: Roughly speaking, a large number of iterations is re-
quired by the non-linearity if the variables, in particular the velocity, change
significantly in the course of the iteration. This is the case if large time steps
are used. On the other hand, if the time step is small (or a very good initial
guess for the velocity exists), then the iteration is needed for the coupling of the
system. In the latter case the pressure-enthalpy coupling will be particularly
efficient.

3 Benchmarks

The pressure-enthalpy coupling has been implemented in the CFD package
FIRE(R) 2010 (distributed by AVL) that uses the SIMPLE method as the
standard algorithm. The benchmarks were run on a Linux-cluster where each
node is equipped with 2 quad-cores (Intel Xeon CPU X5365, 3.00 GHz, main
memory 16 GB, L1-cache 2 · 4 · 32 kB, L2-cache 2 · 4 MB, shared between two
cores). With regard to one of our examples, namely example III, it has to
be mentioned that the nodes are linked by an Infiniband interconnect with a
measured bandwidth of 750 Mbit/s and a latency of 3.3 µs.

The implementation of the SIMPLE method is that of a commercial code.
The employed discretisation practice was explored in other publications starting
with Demirdžić and Muzaferija [8], and continuing with Ferziger and Perić [15],
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Pressure-enthalpy coupling for engine flow 9

Marthur and Marthy [20], Basara [3], Basara et al. [4] etc. Hence the method
has been applied and proved on various applications and a comparison of the
obtained results to measurements or to analytical solutions is skipped here.
The parallelization of FIRE(R) 2010 relies on a domain decomposition based
on the graph partitioning algorithm METIS, see Karypis and Kumar [17]. For
the spatial finite-volume discretisation it is sufficient to provide an overlap of
one layer of finite volumes between two adjacent subdomains. The data associ-
ated with the finite volumes in this layer needs to be exchanged after the values
have been (re-)calculated, i.e. after vector updates and the solution of linear
systems. This exchange is done through synchronous point-to-point commu-
nication using MPI. The linear solver uses the same domain decomposition as
the other parts of FIRE(R) 2010; when it is called, it receives therefore the
distributed matrix information and no redistribution of data is necessary. The
parallelization strategy of the linear solver has been discussed in detail in a
previous publication, see Emans [14]. There are no principal differences in the
parallelization of SIMPLE and SIMPLE with pressure-enthalpy coupling.

The pressure-correction equation of the segregated SIMPLE is solved by an
AMG-preconditioned conjugate gradient iterative method where the AMG is
of Smoothed Aggregation type of Vaněk [28], for details about the implementa-
tion see Emans [14]. The coupled system is solved by an AMG-preconditioned
GMRES that is restarted each 10 iterations; the character of the system is
considered through a unknown-based approach, see Clees [6]. The precondi-
tioning is done as v-cycle with two Gauß–Seidel sweeps for both, pre- and
post-smoothing. The grid hierarchy is setup by aggregation of pairs where the
selection of the pairs follows the algorithm described in detail by Notay [21];
further specific details of the algorithm and of the implementation are reported
in a paper [13] dedicated to this issue. All nonsymmetric systems apart from
the coupled system, but including the energy equation for the segregated SIM-
PLE scheme, are solved by a BiCGstab algorithm that is preconditioned by a
standard ILU(0) factorisation, see Saad [24].

3.1 Gasoline engine – example I

The two benchmark cases in this example are short but representative periods
taken from an unsteady simulation of a full cycle of a four cylinder gasoline
engine. The variation of the position of the piston during the engine cycle as
well as some characteristic results of the simulation are shown in Figure 1.

The simulation comprises the gas flow and the combustion in one of the
cylinders. The stroke of the cylinder is 81.4 mm, the bore is 79.0 mm yielding
a (maximum) volume of 0.4 l (per cylinder). The engine runs at 5500 rpm.
Each benchmark consists of a few time-steps. As usual in CFD simulations
of engines, the three-dimensional computational domain is subject to change
in time: It contains the interior of the cylinder and the ports through which
the air is sucked into the cylinder or hot gas is expelled from it. The piston
surface is a moving boundary. A three-dimensional simulation of a full engine
cycle comprises the simulation of the (compressible) flow of cold air into the
cylinder while the piston is moving downward, the subsequent compression

Math. Model. Anal., 17(1):1–20, 2012.
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10 M. Emans, Z. Žunič, B. Basara and S. Frolov

Figure 1. Scheme of the engine cycle and characteristic simulation results; the arrows
point to the start of the benchmark cases; piston position schematic.

after the valves are closed, the combustion of the explosive mixture, and the
discharge of the hot gas while the piston moves upward. In the simulation
the modelling of the fluid flow by the above discussed system of equations is
amended by the standard k-ε turbulence model by Jones and Launder [16]; the
fluid properties are those of air. The model fuel that is burnt is octane; for the
sake of simplicity, the eddy break-up model by Magnussen and Hjertager [19] is
used to simulate the combustion process. Two and three additional transport
equations are solved for the turbulence model and for the combustion model,
respectively. The simulation is carried out with the FIRE(R) 2010 code that
has been validated for this type of problem many times, see e.g. Priesching
et al. [23]. Further information about the setup can be found in Emans [12].
The computations were done with eight parallel processes located on one node
of the cluster. The iteration is terminated, if the normalized 1-norm of the
residuals of the continuity equation has reached a tolerance of 1.0 · 10−3; the
tolerance of the momentum equations and the energy equation is 1.0 · 10−2.

Example 1a comprises 4 degree crank angle α within the compression phase,
i.e. we observe a closed system with adiabatic walls; the unstructured mesh
consists of 238 000 mostly hexagonal cells. This period is simulated with four
different time resolutions: δα1 = 0.4o, δα2 = 0.2o, δα3 = 0.05o, and δα4 =
0.01o This corresponds to time steps of δt1 = 1.2 · 10−6s, δt2 = 0.60 · 10−6s,
δt3 = 0.15 · 10−6s δt4 = 0.03 · 10−6s; with these time steps we cover the
range that is relevant for applications in engineering. Each calculation has
been carried out once with segregated SIMPLE (SI) that uses block-pressure
adjustment, see Ahmadi-Befrui [1], and with SIMPLE with pressure-enthalpy
coupling (PH).

Example 1b comprises 4 degree crank angle within the combustion phase,
i.e. here, additionally to fluid flow, combustion is modelled; the unstructured
mesh consists of 254 000 mostly hexagonal cells. Other settings as well as the
hardware are identical. The meshes used in example Ia and example Ib are
shown in Figure 2.

The data shown in Figure 3 demonstrates that the pressure-enthalpy cou-
pling improves the convergence of SIMPLE significantly in all cases. The com-
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Pressure-enthalpy coupling for engine flow 11

Figure 2. Meshes of example Ia (compression) left and example Ib (combustion) right.

Figure 3. Total computing time ttot and number of SIMPLE-iterations nit of the
benchmarks of examples Ia and Ib.

puting time is reduced to a lower extent than the number of iterations since
the solution of the coupled system is more expensive than the solution of the
systems in the segregated approach. For the largest part this is due to the more
expensive solution of the linear system: The pressure-correction equation is a
semi-definite or definite system in the case of the conventional SIMPLE algo-
rithm, but it has no beneficial properties apart from the sparseness that can be
exploited by the solver in the case of the pressure-enthalpy coupling algorithm.
In most cases, however, the computing time is still reduced significantly. The
exception is the coarsest time resolution of example Ib.

The savings in terms of SIMPLE iterations increase with decreased time
step. The savings range from 63 % (δα = 0.01o, example Ib) to 26 % (δα =
0.4o, example Ib). The maximum saving in terms of computing time is 49 %
(δα = 0.01o, example Ib).

Math. Model. Anal., 17(1):1–20, 2012.
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12 M. Emans, Z. Žunič, B. Basara and S. Frolov

Figure 4. Characterization of the linear solver: computing times (total simulation time,
solver time), cumulative iteration count, and parallel efficiency. Empty symbols refer to the

calculation with eight processes on one node, filled symbols to the calculation with eight
processes on two nodes, distributed as 2 × 4.

Since the solution of the coupled linear system is more difficult to obtain
than the solution of the corresponding scalar systems, it is necessary to examine
if our choice of the solver is an appropriate one with regard to algorithmic
aspects. Moreover, due to memory bus saturation, in particular of the multi-
core systems, the efficiency of parallel solvers tends to degrade with increased
problems size, as e.g. Starikovičius et al. [25] have observed; it is therefore
also necessary to check if our solver is also technically a good choice. For
this we focus on the calculation of example Ib with a resolution of δα1 = 0.4o

where 118 coupled linear systems are solved. We have repeated the calculation,
using different numbers of processes and different linear solver algorithms. The
computing times of the whole calculation and that of the solver part only, the
iteration count, and the parallel efficiency (defined as e.g. in Emans [12] or
Starikovičius et al. [26]) of the solver part are shown in Figure 4. The short
amv1gm stands for the solver we use for the other calculations in this article;
the solver amf1gm is a similar AMG algorithm which uses the same coarse-
grid construction method as amv1gm, but employs a f-cycle, see Trottenberg
et al. [27] for the definition, instead of a v-cycle; algorithm ichpgm is a much
simpler solver: It has an ILU(0) preconditioner, see Saad [24], instead of a
multigrid method while the solver is still GMRES; this preconditioner is used
e.g. by Chen et al. [5] for similar systems. We observe that the multigrid
based solvers (amf1gm and amv1gm) are much faster than the method with the
ILU(0) preconditioner (ichpgm). The algorithm amf1gm converges faster than
amv1gm, but since one iteration (one GMRES iteration and the preconditioning
using the respective cycle) is more expensive, its computing times tend to be a
bit longer; furthermore, since the scalability of the work on the small grids is
worse than that on the fine grids, algorithm amf1gm (doing more work on these
coarse-grids) behaves slightly worse than amv1gm in particular in parallel.

The linear problems that are solved for SIMPLE-H are larger in terms of un-
knowns than that of SIMPLE and their matrices have more non-zero elements
per row; since the memory traffic is a limiting factor for the performance as has
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Pressure-enthalpy coupling for engine flow 13

been pointed out e.g. in own publication [12, 14], but also e.g. in the papers of
Starikovičius et al. [25, 26], it is interesting to observe possible differences in the
behaviour of the parallel versions of the linear solvers of the pressure-correction
equation in SIMPLE and SIMPLE-H. For this purpose we have added the paral-
lel efficiency of our solver for SIMPLE, a conjugate gradient solver with v-cycle
Smoothed Aggregation AMG as preconditioner (ams1cg), and of a standard
solver for these kind of symmetric positive definite problems, a conjugate gra-
dient solver with an incomplete Cholesky factorisation as preconditioner, see
Saad [24], (ichpcg), to the diagram with the parallel efficiencies. One can ob-
serve that the parallel behaviour of the coupled solver is worse than that of
the scalar solver, but it lies in the range reported in the mentioned papers
(for problem where the number of unknowns is approximately the same). All
solvers show only a slight increase in the number of iterations; on the partic-
ular machine, the calculation with eight parallel processes on one node has a
very poor parallel efficiency: This is due to the known problem of memory bus
exhaustion; it can be remedied by moving four processes to a second node. The
linear solver takes between 20% and 40% of the total computing time.

3.2 Diesel engine segment – example II

An important application of CFD in engine development is the simulation of
the compression and the combustion of diesel engines. The main objective is
to improve the geometry and the parameters of the combustion, e.g.the posi-
tioning and the timing of the diesel injection. In practice, it is often sufficient
to consider segments of the cylinders instead of the entire geometry; in such
cases periodic boundary conditions are applied to map the whole volume of
the cylinder into the computational domain. In this section we examine in
which situations the pressure-enthalpy coupling can be employed efficiently to
such kind of calculations. The bore of the cylinder is 0.086 m, the stroke is
0.098 m, yielding a volume of 0.57 l. The meshes of the largest extension of
the computational domain (bottom dead centre) and that of its smallest ex-
tension (top dead centre) are shown in Figure 5. The largest mesh consists of
approximately 135 000 cells, the smallest of 48 000 cells. The engine speed is
3000 rpm, the simulation starts at crank angle 610o and stops at 860o. The
fuel (diesel) is injected between crank angle 713.5o and 734.8o. A Lagrangian
model is applied to simulate the spray particles; the evaporation is modelled by
the Dukowicz approach [11]. The 3-Zones ECFM (Extended Coherent Flame
Model) by Colin and Benkenida [7] was employed to model the combustion.
The turbulence is modelled by a standard k-ε model according to Jones and
Launder [16]. The computations were done with four parallel processes located
on one node of the cluster.

The time resolution is varied: Table 1 informs about the time stepping. The
iteration is stopped, if the normalized 1-norm of the residuals of the continuity
equation has reached a tolerance of 1.0 · 10−5; the tolerance of the momentum
equations and the energy equation is 1.0 · 10−4.

Characteristic results of the simulation are shown in Figure 6. The range
of time resolutions we examine reflects the requirements in engineering: In

Math. Model. Anal., 17(1):1–20, 2012.
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14 M. Emans, Z. Žunič, B. Basara and S. Frolov

Figure 5. Smallest and largest mesh of the benchmarks of example II.

Table 1. Time step δt (in brackets: crank angle increment δα) in benchmarks of example II.

α 610o 6 α 6 709o 709o < α 6 740o 740o < α 6 860o

t0 1.0o/0.556 · 10−3s 0.2o/0.278 · 10−4s 1.0o/0.556 · 10−3s

t1 0.5o/0.278 · 10−4s 0.1o/0.556 · 10−5s 0.5o/0.278 · 10−4s

t2 0.25o/0.139 · 10−4s 0.05o/0.278 · 10−6s 0.25o/0.139 · 10−4s

t3 0.05o/0.278 · 10−5s 0.01o/0.556 · 10−6s 0.05o/0.278 · 10−5s

practice the choice of the time step, as long as it is not dictated by numerical
constraints, depends on the purpose of the simulation.

Table 2. Impact of different time steps on results of example II: maximum velocity,
maximum and minimum density at α = 725o, final NO and soot concentration.

t0 t1 t2 t3

max. velocity at α = 725o 182.2 m/s 218.2 m/s 222.7 m/s 233.3 m/s

max. density at α = 725o 39.59 kg/m3 41.23 kg/m3 41.03 kg/m3 40.6 kg/m3

min. density at α = 725o 1.220 kg/m3 1.202 kg/m3 1.165 kg/m3 1.167 kg/m3

final NO concentration 3.52 · 10−4 3.17 · 10−4 2.51 · 10−4 1.92 · 10−4

final soot concentration 5.95 · 10−4 5.45 · 10−4 3.76 · 10−4 2.49 · 10−4

The data in Table 2 show typical examples of primary flow values that
change significantly when the time resolution is changed. In order to illustrate
the consequences that such differences can entail, we have added to Table 2
the output of an emission model that relies on the fluid flow solution: The
NO concentration has been calculated by an extended Zeldovich approach, see
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Pressure-enthalpy coupling for engine flow 15

Lavoie et al. [18], and the soot formation was modelled by a kinetic model, see
Wang and Frenklach [29].

Figure 6. Results of flow simulation and heat release of example I (resolution t1).

The results plotted in Figure 6 exemplify that the prediction of the fluid
flow is exactly the same for both methods; observe that both curves coincide.
This means that, if both algorithms converge and the tolerances are set ap-
propriately (which is the case here), then the flow solution obtained by the
pressure-enthalpy coupling scheme is equivalent to that of conventional SIM-
PLE.

Table 3. Wall clock times of entire computation and computation of the solution of the
pressure-correction equation (coupled system for coupled system) and accumulate iteration
count for example II.

ttot tsol nit

PH-t0 4959s 840s 7392
PH-t1 7408s 1309s 11 865
PH-t2 13 132s 2114s 20 935
PH-t3 30 322s 3983s 45 545

ttot tsol nit

SI-t0 4423s 356s 8224
SI-t1 7626s 616s 14 542
SI-t2 15 545s 1164s 28 462
SI-t3 45 792s 2823s 72 677

The wall clock times for calculations with four parallel processes on one
node of the cluster and the iteration counts in Figure 7 show that the pressure-
enthalpy coupling scheme converges generally more rapidly than SIMPLE. As
in the previous example the advantage of this new scheme increases with smaller
time step. Although its convergence is superior, it is sometimes slower than
SIMPLE. This is a consequence of the fact that a larger linear system with less
favourable properties needs to be solved. Table 3 shows the total wall clock
times for the entire computation and for the solution of the pressure-correction

Math. Model. Anal., 17(1):1–20, 2012.
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16 M. Emans, Z. Žunič, B. Basara and S. Frolov

Figure 7. Iteration count and wall clock times for benchmarks of example II.

equation. The definition of a criterion which allows in advance to choose the
faster algorithm is difficult: It does not only depend on the problem and the
current values of the unknowns, but also on the parameters and, in practice,
the load of the used computer. The elaboration of appropriate strategies will
be subject to future work.

Note that in this simulation the combustion was modelled by 3-Zones ECFM
which requires the solution of 27 transport equations. The accelerating effect of
the pressure-enthalpy coupling is due to the reduction of the number of SIMPLE
iterations. Since in every iteration the coefficients of these transport equations
need to be calculated and the equations need to be solved, a reduction of the
number of iterations through the pressure-enthalpy coupling scheme is particu-
larly beneficial if many of such transport equations are solved. Although there
are simpler combustion models such as the mentioned eddy break-up model
by Magnussen and Hjertager [19], advances in combustion modelling will re-
quire the solution of significantly larger numbers of transport equations, e.g.
Antonelli et al. [2] track already 62 chemical species for which individual trans-
port equations are solved. The presented results indicate that for such complex
simulations the pressure-enthalpy coupling can be an attractive algorithm.
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Pressure-enthalpy coupling for engine flow 17

3.3 Intake port – example III

Another advanced application of CFD in engine development is the prediction
of the fuel distribution in the intake port of gasoline engines. Here the fuel
forms a film at the duct walls. The extension, thickness and position of this
film influence the mixture formation. This wallfilm is a very complex two-phase
problem for which e.g. additional two-dimensional models might be employed.
Those wallfilm models interact with the prediction of the motion of the gas in
the intake port. Our benchmark is the simulation of the fluid motion in the
intake port during the time the inlet valve is closed. During this time, the
computational domain is closed; fluid motion and a pressure wave are caused
by the preceding flow of the air/fuel mixture into the cylinder. For the purpose
of this study we consider only the flow of the air/fuel mixture; the wallfilm
model is deactivated in order to keep the description of the case simple. The
computations were done with twelve parallel processes located on two nodes of
the cluster (2× 6).

The computational domain is resolved spatially by a mesh of about 2.1 mio.
cells which is shown in Figure 8. The uniform time step of the simulation is
1.852·10−5s. Again the standard k-εmodel according to Jones and Launder [16]
is applied. The tolerances for continuity, momentum, and energy equation are
1.0 · 10−4 in this case. The calculated mean physical values, iteration counts,
and wall clock times of this simulation are plotted in Figure 9.

Figure 8. Mesh of example III.

This case is another example for the pressure-enthalpy coupling scheme be-
ing an advantageous improvement to SIMPLE. The wall clock times for SIM-
PLE and SIMPLE with pressure-enthalpy coupling are 70 900s (including 8944s
for the solution of the coupled system) and 52 068s (including 17 955s for the
solution of the pressure-correction equation) respectively.

Math. Model. Anal., 17(1):1–20, 2012.
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18 M. Emans, Z. Žunič, B. Basara and S. Frolov

Figure 9. Computing time and iteration count (left) and results (right) of example III.

4 Conclusions

The presented pressure-enthalpy coupling scheme reduces the number of SIM-
PLE iterations by up to 63% in practically relevant engine simulations. The
disadvantage of the method is that the computational effort to solve linear
systems for the pressure correction mechanism is increased compared to seg-
regated SIMPLE. The method is particularly efficient if small time steps are
chosen; for large time steps the method happens to be slower than conventional
SIMPLE since in such cases the non-linearity and not the coupling of the equa-
tions tends to necessitate a large portion of the iterations; in such cases the
increased effort to solve the linear systems is not compensated by the reduction
of the number of iterations. Nevertheless we can show that the computing time
of a complex engine simulation using the pressure-enthalpy coupling scheme is
reduced by 49% compared to segregated SIMPLE; the lower percentage-wise
reduction of computing time compared to that of the iteration count reflects
the increased computational cost to solve the linear systems. Since SIMPLE-H
is not always faster than the conventional SIMPLE, it would be particularly
useful for engineering application to dispose of a criterion allowing for the au-
tomatic choice the faster algorithm. The development of such a criterion is,
along with research for a more efficient linear solver, subject to future work.
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