## - ГОРЕНИЕ, ВЗРЫВ И УДАРНЫЕ ВОЛНЫ

УДК 541.126

# МЕХАНИЗМЫ ОКИСЛЕНИЯ И ГОРЕНИЯ НОРМАЛЬНЫХ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ: ПЕРЕХОД ОТ С<sub>1</sub>-С<sub>10</sub> К С<sub>11</sub>-С<sub>16</sub>

© 2013 г. В. Я. Басевич\*, А. А. Беляев, В. С. Посвянский, С. М. Фролов

Институт химической физики им. Н.Н. Семенова Российской академии наук, Москва \*E-mail:basevich@center.chph.ras.ru

Поступила в редакцию 06.04.2012

В последнее время для высших углеводородов предлагаются детальные механизмы, содержащие сотни компонентов и тысячи элементарных химических актов. Несмотря на достоинства таких детальных механизмов, их применение для моделирования турбулентного горения и газодинамических явлений затруднено в силу громоздкости. В то же время они не могут претендовать на всеобъемлемость, так как в определенной степени ограничены. В работе применяется предложенный ранее алгоритм построения оптимального механизма высоко- и низкотемпературного окисления и горения нормальных парафиновых углеводородов с главными процессами, определяющими скорость реакции и образование основных промежуточных и конечных продуктов. Механизм имеет статус неэмпирического детального механизма, поскольку все элементарные реакции имеют кинетическое обоснование, а так же две особенности: 1) в нем отсутствуют реакции так называемого двойного присоединения кислорода (сначала к перекисному радикалу, а затем к его изомерной форме), т.е. первое присоединение считается достаточным; 2) в нем не рассматриваются в качестве промежуточных компонентов изомерные соединения и их производные, так как этот путь окисления медленнее, чем окисление через молекулы и радикалы нормального строения. Применение алгоритма приводит к достаточно компактным механизмам, что важно для моделирования химических процессов в случае парафиновых углеводородов С<sub>n</sub> с большим n. Ранее на основе такого алгоритма построены компактные механизмы окисления и горения пропана, н-бутана, н-пентана, н-гексана, н-гептана, н-октана, н-нонана и н-декана. В данной работе построен неэмпирический детальный механизм окисления и горения углеводородов от н-ундекана до н-гексадекана. Важнейшая особенность нового механизма – проявление стадийности в виде холодных и голубых пламен при низкотемпературном самовоспламенении. Проведено сравнение результатов расчетов с экспериментальными данными.

Ключевые слова: самовоспламенение, парафиновые углеводороды, кинетические механизмы.

DOI: 10.7868/S0207401X13040031

## введение

В последнее время для высших углеводородов предлагаются детальные механизмы окисления и горения, содержащие сотни компонентов и тысячи элементарных химических реакций. Такие механизмы учитывают многообразие промежуточных стабильных молекул и радикалов в реакциях окисления и горения углеводородов. Например, в [1] для н-гептана представлена схема, содержащая 650 компонентов и 2300 реакций, а в [2] для ряда углеводородов от н-октана до н-гексадекана - схема, содержащая 2116 компонентов и 8130 реакций. Несмотря на неоспоримые достоинства таких детальных механизмов, применение последних для решения многомерных задач газовой динамики горения затруднено в силу их громоздкости. Вместе с тем, если учесть все возможные компоненты-изомеры и все реакции между всеми компонентами, легко показать, что объемы механизмов могут быть намного превзойдены (например, за счет включения полициклических ароматических углеводородов, сажи, колебательно-возбужденных молекул, реакций их образования и расходования и т.д. [3, 4]).

Кроме того, имеется неопределенность в построении таких механизмов, поскольку отсутствуют многие необходимые и достаточно проверенные данные по термохимии и по скоростям реакций. Это сказывается на обоснованности и точности кинетических механизмов. Наконец, во всех известных публикациях отсутствует информация о применимости предлагаемых детальных кинетических механизмов к описанию многостадийного низкотемпературного окисления углеводородов [5, 6], сопровождаемого образованием не только холодных, но и голубых пламен [7].

Таким образом, известные детальные кинетические механизмы, как правило, не являются всеобъемлющими и в определенной степени ограничены. Между тем для конкретных задач, в которых должны быть учтены главные процессы, определяющие скорость реакции и образование основных промежуточных и конечных продуктов, представляют интерес не максимальные, а оптимальные механизмы окисления и горения углеводородов. Такие механизмы, даже если они достаточно компактные, не теряют статус неэмпирических детальных механизмов, пока все составляющие их элементарные реакции имеют кинетическое обоснование. Другими словами, для моделирования окисления и горения углеводородов всегда имеется возможность неэкстенсивного построения механизмов с целевым ограничением многообразия продуктов и реакций, но сохранением основных каналов процесса и принципиально важных типов элементарных актов.

Известна большая общность в феноменологии реакций парафиновых углеводородов [5-8]. Эта общность позволяет применить алгоритм [8–13], использованный ранее для построения химического механизма окисления и горения парафиновых углеводородов от пропана до н-декана, для построения механизма окисления и горения следующих членов гомологического ряда – от н-ундекана C<sub>11</sub>H<sub>24</sub> до н-гексадекана C<sub>16</sub>H<sub>34</sub>. В алгоритм [8-13] заложен принцип неэкстенсивного построения механизма, основанный на двух допущениях: предполагается, что 1) низкотемпературное разветвление описывается группой реакций с одним присоединением кислорода, и 2) каналы реакций окисления через изомерные формы можно исключить из рассмотрения, поскольку они медленнее, чем окисление через неизомеризованные компоненты.

В связи с первым допущением отметим, что для описания холоднопламенной кинетики окисления углеводородов иногда применяются схемы с так называемым двойным присоединением кислорода – сначала к перекисному радикалу, а затем к его изомеризованной форме [4]. Экспериментальных данных по скоростям реакций, требующихся для описания двойного присоединения, в справочной литературе нет, поэтому в работах, в которых двойное присоединение все же учитывается, используются лишь предположительные теоретические оценки. Однако необходимость второго присоединения кислорода для количественной интерпретации скоростей реакции до сих пор не доказана: при окислении  $CH_4$  и  $C_2H_6$ такие реакции затруднены из-за структурного напряжения, а для более тяжелых углеводородов, например для пропана [8] и даже для н-декана [13], для удовлетворительного описания известных экспериментальных данных оказалось достаточным учесть лишь первое присоединение. Это вполне согласуется с тем известным фактом, что в химической кинетике при заданных термохимических условиях две реакции очень редко могут вносить равнозначный вклад в процесс окисления. Поэтому в [8–13] предполагали, что низкотемпературное разветвление для углеводородов алканового ряда от  $C_3H_8$  до н-декана описывается лишь группой реакций с одним присоединением кислорода. В этой группе имеются реакции, которые обеспечивают низкотемпературное окисление:

$$R + O_2 = RO_2,$$
  

$$RO_2 + RH = RO_2H + R,$$
  

$$RO_2H = RO + OH,$$

(RH – исходный углеводород, R – углеводородный радикал), после которых следуют другие реакции распада и окисления образующихся радикалов и молекул.

Подчеркнем, что механизмы окисления  $C_n H_{2n+2}$  при n > 10 уже предлагались ранее (см., например, [2-4]), однако нигде не было показано, что предлагаемые механизмы адекватно описывают многостадийное окисление углеводородов с образованием не только холодных, но и голубых пламен при самовоспламенении. Поэтому разработка механизмов окисления и горения парафиновых углеводородов вплоть до n = 16 на базе принципа неэкстенсивности представляется важной и полезной для практики, поскольку такие тяжелые углеводороды присутствуют в моторных топливах.

### ПОСТРОЕНИЕ МЕХАНИЗМА

Согласно алгоритму [8–13], при разработке кинетического механизма окисления углеводорода  $C_n H_{2n+2}$  за основу берется механизм окисления его аналога в гомологическом ряду с числом атомов углерода *n*, меньшим на единицу:  $C_{(n-1)}H_{2(n-1)+2}$ . Это относится и к реагентам, и к реакциям. Например, для н-ундекана предыдущим аналогом в гомологическом ряду является н-декан, поэтому для него за основу взят механизм окисления и горения углеводородов C<sub>1</sub>-C<sub>10</sub>, включающий 108 компонентов и 1083 реакции [13]. Алгоритм, использованный в [8-13] реализован в виде вычислительной программы, которая отбирает новые компоненты, новые реакции и их аррениусовские параметры. В таблице представлены новые компоненты для каждого n = 11, ..., 16.

Используя рекомендации работы [14], для выбранных компонентов на основе правил аддитивности вычисляли энтальпию образования  $\Delta H_{f298}^{\circ}$ , энтропию  $S_{298}^{\circ}$  и коэффициенты полинома для изобарной теплоемкости  $c_p = c_0 + c_1 T/10^3 + c_2 T^2/10^6 + c_3 T^3/10^9$ . С каждым прибавлением

| N⁰ | Название компонента                | Формула                  |
|----|------------------------------------|--------------------------|
| 1  | Нормальный парафиновый углеводород | $C_n H_{2n+2}$           |
| 2  | Углеводородный радикал             | $C_n H_{2n+1}$           |
| 3  | Перекисный радикал                 | $C_n H_{2n+1} O_2$       |
| 4  | Гидроперекись                      | $C_n H_{2n+1} O_2 H$     |
| 5  | Оксирадикал                        | $C_n H_{2n+1} O$         |
| 6  | Альдегид                           | $C_{n-1}H_{2(n+1)+1}CHO$ |
| 7  | Альдегидный радикал                | $C_{n-1}H_{2(n+1)+1}CO$  |
| 8  | Непредельный углеводород           | $C_n H_{2n}$             |
| 9  | Радикал непредельного углеводорода | $C_nH_{2n-1}$            |

Реагенты механизма окисления и горения

группы СН<sub>2</sub> к компонентам механизма окисления ндекана инкремент изменения энтальпии образования выбирали равным —4.932 ккал/моль, инкремент изменения энтропии — равным 9.564 кал/моль · К, а инкременты изменения коэффициентов полинома для изобарной теплоемкости,  $c_0$ ,  $c_1$ ,  $c_2$  и  $c_3$  (размерность  $c_p$  — кал/моль · К), — равными 0.3934, 0.021363, —0.1197 · 10<sup>-4</sup> и 0.2596 · 10<sup>-8</sup> соответственно.

Ниже представлены новые реакции для каждого n = 11, ..., 16:

1. 
$$C_nH_{2n+2} + O_2 = C_nH_{2n+1} + HO_2;$$
  
2.  $C_nH_{2n+2} + OH = C_nH_{2n+1} + H_2O;$   
3.  $C_nH_{2n+2} + H = C_nH_{2n+1} + H_2;$   
4.  $C_nH_{2n+2} + O = C_nH_{2n+1} + OH;$   
5.  $C_nH_{2n+2} + HO_2 = C_nH_{2n+1} + H_2O_2;$   
6.  $C_nH_{2n} + H = C_nH_{2n+1};$   
7.  $C_nH_{2n+1} + O_2 = C_nH_{2n} + HO_2;$   
8.  $C_nH_{2n+1} + OH = C_nH_{2n} + H_2O;$   
9.  $C_nH_{2n+2} = C_mH_{2m+1} + C_{n-m}H_{2(n-m)+1},$   
 $m = 0, ..., n/2$  для четных  $n,$   
 $m = 0, ..., (n - 1)/2$  для нечетных  $n;$   
10.  $C_nH_{2n+1} + C_mH_{2m+1} = C_nH_{2n} + C_mH_{2m+2},$   
 $m = 0, ..., (n - 1);$   
11.  $C_nH_{2n+1} + O = C_nH_{2n} + OH,$   
12.  $C_nH_{2n+1} + O_2 = C_nH_{2n+1}O_2 =$   
 $= C_nH_{2n+1} + C_mH_{2m+1}O_2 =$   
 $= C_nH_{2n+1} + C_mH_{2m+1}O_2 + M_{2m+1}O_2 + M_{2m+1}O_$ 

ХИМИЧЕСКАЯ ФИЗИКА том 32 № 4 2013

16.  $C_n H_{2n+1}O_2 + C_m H_{2m+1} = C_n H_{2n+1}O + C_m H_{2m+1}$ m = 0, ..., n;17.  $C_n H_{2n+1} O_2 + C_m H_{2m+1} CHO =$  $= C_n H_{2n+1} O_2 H + C_m H_{2m+1} CO,$ m = 0, ..., (n - 1);18.  $C_n H_{2n+1} + HO_2 = C_n H_{2n+1}O + OH$ , 19.  $C_n H_{2n+1} + O_2 = C_{n-1} H_{2n-1} CHO + OH$ , 20.  $C_n H_{2n+1} + C_m H_{2m+1} =$  $= C_m H_{2n+2} + C_m H s_{2m}, m = 2, ..., n;$ 21.  $C_n H_{2n+1} + O_2 = C_m H_{2m+1} CHO + C_{n-m-1} H_{2(n-m)-1}$  $m = 0, \dots, (n - 2)$ : 22.  $C_n H_{2n+1} + OH = C_m H_{2m+1} + C_{n-m} H_{2(n-m)+1}$ m = 1, ..., (n - 1);23.  $C_n H_{2n+1} + H = C_m H_{2m+1} + C_{n-m} H_{2(n-m)+1}$ m = 1, ..., n/2 для четных n, m = 1, ..., n - 1/2 для *n* нечетных; 24.  $C_n H_{2n+1} + H = C_m H_{2m} + C_{n-m} H_{2(n-m)+2}$ m = 1, ..., (n - 1);25.  $C_n H_{2n+1} + O = C_m H_{2m+1} + C_{n-m-1} H_{2(n-m)-1} CHO$ , m = 0, ..., (n - 1);26.  $C_{n-1}H_{2n-1}CO + HO_2 = C_{n-1}H_{2n-1}CHO + O_2;$ 27.  $C_{n-1}H_{2n-1}CHO + OH = C_{n-1}H_{2n-1}CO + H_2O;$ 28.  $C_{n-1}H_{2n-1}CHO + H = C_{n-1}H_{2n-1}CO + H_2;$ 29.  $C_{n-1}H_{2n-1}CHO + O = C_{n-1}H_{2n-1}CO + OH;$ 30.  $C_{n-1}H_{2n-1}CHO + HO_2 = C_{n-1}H_{2n-1}CO + H_2O_2$ ; 31.  $C_{n-1}H_{2n-1} + HCO = C_{n-1}H_{2n-1}CHO;$ 32.  $C_{n-1}H_{2n-1} + CO = C_{n-1}H_{2n-1}CO;$ 33.  $C_{n-1}H_{2n-1}CO + H = C_{n-1}H_{2n-1} + HCO;$ 34.  $C_{n-1}H_{2n-1}CO + O = C_{n-1}H_{2n-1}O + CO;$ 35.  $C_nH_{2n} + OH = C_nH_{2n-1} + H_2O;$ 

$$36. C_{n}H_{2n-1} + H_{2} = C_{n}H_{2n} + H;$$

$$37. C_{n}H_{2n-1} + O_{2} = C_{n-2}H_{2(n-2)+1}O_{2} + C_{2}H_{2};$$

$$38. C_{n}H_{2n} + HCO = C_{n}H_{2n-1} + H_{2}CO;$$

$$39. C_{n}H_{2n} + C_{m}H_{2m+1} = C_{n}H_{2n-1} + C_{m}H_{2m+2},$$

$$m = 1, ..., (n-1);$$

$$40. C_{n-2}H_{2n-3} + C_{2}H_{2} = C_{n}H_{2n-1},$$

$$41. C_{n}H_{2n} = C_{m}H_{2m-1} + C_{n-m}H_{2(n-m)+1},$$

$$m = 2, ..., (n-1);$$

$$42. C_{n}H_{2n} + O_{2} = C_{n}H_{2n-1} + HO_{2};$$

$$43. C_{n}H_{2n} + O = C_{n-1}H_{2n-1} + HCO;$$

$$44. C_{n}H_{2n-1} + OH = C_{n-1}H_{2n-1} + HCO;$$

$$45. C_{n}H_{2n-1} + H = C_{n-2}H_{2n-2} + C_{2}H_{2};$$

$$46. C_{n}H_{2n-1} + O = C_{n-1}H_{2n-1} + CO;$$

$$47. C_{n}H_{2n-1} + O = C_{n-2}H_{2n-3}O + C_{2}H_{2};$$

$$48. C_{m-1}H_{2m-1} + C_{n-m+1}H_{2(n-m)+3} = C_{n}H_{2n} + H_{2}$$

$$m = 2, ..., (n-1);$$

$$49. C_{n}H_{2n} + H + H = C_{m}H_{2m+1} + C_{n-m}H_{2(n-m)+1}$$

Здесь запись типа m = 0, ..., n означает, что число *т* варьируется от 0 до *n*, где n – число атомов углерода в том или ином химическом компоненте. В механизм для н-ундекана по сравнению с механизмом для н-декана потребовалось ввести 9 новых компонентов и 180 элементарных актов, так что полный объем н-ундеканового механизма -117 компонентов и 1263 реакции. Соответственно, объем н-додеканового механизма увеличился до 126 компонентов и 1459 реакций, н-тридеканового механизма – до 135 компонентов и 1667 реакций, н-тетрадеканового механизма – до 144 компонентов и 1892 реакций, н-пентадеканового механизма – до 153 компонентов и 2128 реакций, и нгексадеканового механизма – до 162 компонентов и 2380 реакций (каждая реакция учитывается в прямом и обратном направлении).

Как и в [8–13], при оценке кинетических параметров новых реакций полагали, что значения констант механизма окисления пропана [8] вполне удовлетворительны и их можно использовать для построения массива констант для более сложных углеводородов на основе выведенных выражений для двухпараметрической формы константы скорости *i*-й реакции с предэкспоненциальным множителем  $A_i$  и энергией активации  $E_i$ :

$$A_{i(n)} = A_{i(n=3)} \exp[(\Delta S_{i(n)} - \Delta S_{i(n=3)})/R], \quad (1)$$

$$E_{i(n)} = E_{i(n=3)} - 0.25(\Delta H_{i(n)} - \Delta H_{i(n=3)})$$
(2)

для экзотермических реакций и

$$E_{i(n)} = E_{i(n=3)} + 0.75(\Delta H_{i(n)} - \Delta H_{i(n=3)})$$
(3)

для эндотермических реакций, где R – газовая постоянная,  $\Delta S_{i(n)}$  и  $\Delta S_{i(n=3)}$  – соответствующие изменения энтропии реакций,  $\Delta H_{i(n)}$  и  $\Delta H_{i(n=3)}$  – соответствующие изменения энтальпии реакций.

Возникновение холодного и голубого пламени при многостадийном самовоспламенении – яркий пример критических явлений в химической кинетике. Известно, что критические явления многофункциональны и проявляются при определенном соотношении скоростей разных элементарных актов. Поэтому при их кинетическом моделировании требуются дополнительный анализ и подбор констант скоростей важнейших реакций в допустимом теорией диапазоне значений, не превосходящих экспериментальные погрешности. Другими словами, простая подстановка приближенных значений определяющих констант скоростей не всегда позволяет описать наблюдаемые критические явления. Для полученных механизмов окисления парафиновых углеводородов с n == 11, ..., 16 такая корректировка констант скорости потребовалась применительно к ограниченному числу реакций, а именно, реакций этих углеводородов с гидроперекисными радикалами и реакций алкильного радикала с молекулярным кислородом.

## ПРОВЕРКА МЕХАНИЗМА

#### Самовоспламенение газовых смесей

Предсказательную способность механизма проверили, сравнив результаты расчетов с известными экспериментальными данными по самовоспламенению изучаемых углеводородов. Следует, однако, отметить, что прямых экспериментов для таких углеводородов мало, поэтому для проверки механизмов привлекали и косвенные данные. Расчеты проводили по стандартной кинетической программе, ранее использованной в [8–13].

На рис. 1 представлены типичные расчетные зависимости температуры от времени t при самовоспламенении стехиометрической воздушной смеси н-гексадекана при относительно низкой (787 К) и высокой (1000 К) начальных температурах. Видно, что при высокой начальной температуре самовоспламенение происходит как одностадийное: температура монотонно возрастает без каких-либо особенностей на кривой зависимости T(t), и взрыв наступает при  $t \approx 2.4$  мс. При низкой начальной температуре самовоспламенение происходит как многостадийное с последовательным появлением холодного и голубого пламен, а затем и горячего взрыва. Первый ступенчатый подъем на кривой зависимости T(t) происходит при  $t \approx 0.9$  мс и связан с возникновением холодного пламени. По истечении некоторого периода времени (при  $t \approx 2$  мс) за холодным



**Рис. 1.** Расчетные зависимости температуры газа T от времени t при самовоспламенении стехиометрической воздушной смеси н-гексадекана при  $T_0 = 787$  (I) и 1000 K (2) и  $P_0 = 15$  атм.

пламенем возникает голубое пламя, а затем (при  $t \approx 3.2$  мс) происходит горячий взрыв и температура возрастает до значений, превышающих 2500 К.

Ускорение реакции в холодном пламени является следствием разветвления при распаде алкилгидроперекиси (здесь – алкилгидроперекиси  $C_{16}H_{33}O_{2}H$ ) с образованием гидроксила и оксирадикала. Голубое пламя возникает вследствие разветвления, вызванного распадом пероксида водорода H<sub>2</sub>O<sub>2</sub>. На это указывает поведение расчетных кинетических кривых пероксидов и два пика на кривой для концентрации гидроксила (рис. 2). Горячий взрыв – следствие цепной разветвленной реакции атомарного водорода Н с молекулярным кислородом О2. Отметим, что в экспериментах такое четкое разделение стадий может не обнаруживаться вследствие температурных неоднородностей, однако в действительности оно должно локально проявляться.

Сравнение разработанного кинетического механизма с данными эксперимента было сделано для самовоспламенения  $C_{12}H_{26}$ . На рис. 3 представлены расчетные (кривые) и измеренные (точки [15, 16]) задержки самовоспламенения для смеси 0.00562 $C_{12}H_{26}$ -0.21 $O_2$ -Аг (стехиометрическое отношение  $\Phi = 0.5$ ) при различных температурах и начальных давлениях  $P_0 = 6.7$  и 20 атм. По данным работ [17, 18] можно построить опытную зависимость задержек самовоспламенения смеси н-додекана с воздухом ( $\Phi = 0.5$ ) непосредственно от давления и сравнить ее с расчетной кривой (рис. 4). В [17, 18] приводится так же экспериментальная зависимость задержек самовоспламенения для этой же смеси в широком диапазоне тем-

ХИМИЧЕСКАЯ ФИЗИКА том 32 № 4 2013



**Рис. 2.** Расчетные зависимости безразмерных концентраций пероксидов и гидроксила от времени при самовоспламенении стехиометрической воздушной смеси н-гексадекана;  $T_0 = 787$  K,  $P_0 = 15$  атм.

ператур, включающем область отрицательного температурного коэффициента (ОТК) при давлении 20 атм. Сравнение расчетов с этими экспериментальными данными представлено на рис. 5. На рис. 6 проведено сравнение наших расчетов с экспериментальными данными из работы [19] по изменению концентраций компонентов в ударной волне для разбавленной аргоном кислородной смеси н-додекана. На рис. 7 проведено сравнение расчетных задержек самовоспламенения с экспериментальными данными из [17] для воз-



**Рис. 3.** Сравнение расчетных (кривые) и измеренных (точки [15, 16]) зависимостей задержек самовоспламенения  $\tau_i$  смеси  $0.00562C_{12}H_{26}-0.21O_2$ -Аг от начальной температуры  $T_0$  при  $P_0 = 6.7$  (1, •) и 20 атм (2, •).



**Рис. 4.** Сравнение расчетной (кривая) и измеренной (точки [17, 18]) зависимостей задержек самовоспламенения  $\tau_i$  от давления для смеси н-додекана с воздухом при  $\Phi = 0.5$ ,  $T_0 = 1110$  K.



**Рис. 5.** Сравнение расчетных (кривые) и измеренных (точки [17, 18]) зависимостей задержек самовоспламенения  $\tau_i$  от начальной температуры для смеси ндодекана с воздухом при  $\Phi = 0.5$  (1, **•**) и 1.0 (2,  $\bigcirc$ ),  $P_0 = 20$  атм.



**Рис. 6.** Сравнение экспериментальных данных [19] (слева) с расчетными зависимостями (справа) концентраций компонентов в ударной волне для смеси 457 ppm н-додекана –  $O_2$  – Ar при  $\Phi$  = 1.0,  $T_0$  = 1410 K,  $P_0$  = 2.3 атм.

душных смесей н-тетрадекана  $C_{14}H_{30}$  разного состава.

На рис. 8 представлены расчетные зависимости задержек самовоспламенения для стехиометрических воздушных смесей углеводородов с n == 3-7, 10 и 16 от начальной температуры при одинаковом давлении  $P_0 = 15$  атм. Можно видеть качественную согласованность между всеми расчетными кривыми. Отметим, что ранее [8–13] результаты расчетов для n = 3-7, 10 сравнивались с опытными данными, поэтому наблюдаемую согласованность результатов для n = 3-7, 10 и n = 16 можно рассматривать как косвенное доказательство удовлетворительности моделирования процесса самовоспламенения для углеводородов с n = 11, ..., 16. Важнейшая особенность воздушных смесей всех этих углеводородов — проявление многостадийности самовоспламенения: при низких и средних температурах на всех кривых имеется участок с отрицательным или нулевым температурным коэффициентом скорости реакции, когда при высокой начальной температуре суммарные задержки са-



**Рис.** 7. Сравнение расчетных (кривые) и измеренных (точки [17]) зависимостей задержек самовоспламенения  $\tau_i$  от начальной температуры для смесей н-тетрадекана с воздухом разного состава при ( $\Phi = 0.5$  ( $1, \bullet$ ) и 1.0 ( $2, \blacksquare$ )),  $P_0 = 40$  атм.

мовоспламенения оказываются больше, чем при низкой.

На рис. 9 представлены задержки самовоспламенения для стехиометрических воздушных смесей парафиновых углеводородов с n = 3-16 при начальной температуре  $T_0 = 787$  К и начальном давлении  $P_0 = 15$  атм. Здесь темные точки получены путем обработки известных из литературы опытных данных, темный квадрат — результат их экстраполяции с помощью экспоненциальной зависимости, а кривая построена по результатам расчетов с использованием детального механизма окисления н-гексадекана, в котором участвуют все углеводороды с n до 16.

#### Распространение ламинарного пламени

Для проверки нового кинетического механизма дополнительно провели расчеты скорости распространения ламинарного пламени  $u_n$  для воздушных смесей н-додекана с разным коэффициентом избытка горючего Ф при атмосферном давлении и начальной температуре  $T_0 = 400$  и 470 K, используя одномерную вычислительную программу [20]. На рис. 10 проведено сравнение расчетных значений  $u_n$  с опытными данными [21].

#### Самовоспламенение капель

Полученные детальные кинетические механизмы также применили к расчету самовоспламенения и горения капель изучаемых индивидуальных углеводородов. В основе расчета – нестационар-

ХИМИЧЕСКАЯ ФИЗИКА том 32 № 4 2013



**Рис. 8.** Сравнение расчетных зависимостей задержек самовоспламенения  $\tau_i$  от начальной температуры для стехиометрических воздушных смесей разных углеводородов (n = 3-7, 10, 16 соответственно для кривых сверху вниз) при  $P_0 = 15$  атм.

ные одномерные (сферическая симметрия) уравнения сохранения массы, химических компонентов и энергии для газовой и конденсированной фазы с сопряжением решений на поверхности капли. Детальное описание математической модели и методики расчета приведено в [22]. Вокруг капли задавали постоянную начальную температуру воздуха  $T_{e0}$ , а начальную температуру жидкости



**Рис. 9.** Сравнение расчетных (кривая) и измеренных (точки) задержек самовоспламенения  $\tau_i$  стехиометрических смесей парафиновых углеводородов  $C_n H_{2n+2}$  с разным *n* при  $T_0 = 787$  К и  $P_0 = 15$  атм:  $\bullet$  – обработка литературных опытных данных,  $\blacksquare$  – результат экстраполяции.



**Рис. 10.** Сравнение расчетной (кривая) и измеренной (точки [21]) зависимостей скорости распространения ламинарного пламени  $u_n$  от коэффициента избытка горючего Ф для смеси н-додекана с воздухом при  $T_0 = 400 (1, \bullet)$  и 470 К  $(2, \bullet)$ ,  $P_0 = 1$  атм.

 $T_{l0}$  всегда принимали равной 293 К. Начальный радиус расчетной области  $R_0$  вокруг капли выбирали много большим начального радиуса капли  $r_0$ . В соответствии с [22] любому выбранному значению  $R_0$  соответствует определенное значение коэффициента избытка горючего Ф в однородной монодисперсной капельной газовзвеси. По истечении некоторого времени — периода индукции самовоспламенения — в газе на некотором расстоянии от центра капли происходило самовоспламенение.

При решении задачи для одиночных капель разного размера и для капельных газовзвесей (в предположении однородности и монодисперсности газовзвеси) в широком диапазоне давлений, начальных температур воздуха и начальных составов смеси Ф обнаружилось проявление такой же многостадийности процесса окисления, как и при самовоспламенении газовой смеси. Так, на рис. 11 представлены результаты расчетов самовоспламенения капель н-тетрадекана в воздухе в виде зависимостей максимальной температуры газа от времени при начальных температурах воздуха  $T_{g0} = 750, 850, 1000$  и 1200 К и начальном давлении  $P_0 = 20$  атм. Расчеты проведены для капельной газовзвеси с  $d_0 = 2r_0 = 60$  мкм и коэффициентом избытка горючего  $\Phi = 1$ , рассчитанным по массе жидкого горючего и воздуха (начальная концентрация паров горючего в воздухе была равна нулю). Видно, что кривые рис. 11 очень похожи на кривые рис. 1, т.е. при самовоспламенении капель на кривых максимальной температуры газовой фазы могут наблюдаться сменяющие друг



**Рис. 11.** Расчетные зависимости максимальной температуры газа  $T_{g, max}$  от времени t при самовоспламенении стехиометрических капельных смесей н-тетрадекана в воздухе при  $T_{g0} = 750, 850, 1000$  и 1200 К (кривые 1-4):  $d_0 = 60$  мкм,  $P_0 = 20$  атм.

друга холодные и голубые пламена с последующим горячим взрывом. Отметим, что холодные пламена при самовоспламенении капельной струи экспериментально наблюдались в [23].

На рис. 12 представлены расчетные зависимости максимальной температуры газа вокруг капель  $T_{g,max}$  и квадрата диаметра капель  $d^2$  от времени t при самовоспламенении капельных газовзвесей углеводородов С<sub>11</sub>Н<sub>24</sub>, С<sub>13</sub>Н<sub>28</sub> и С<sub>16</sub>Н<sub>34</sub> с  $d_0 = 60$  мкм,  $\Phi = 1$  при  $T_{g0} = 1000$  К и  $P_0 = 20$  атм. Из рис. 12 видно, что квадрат диаметра капли сначала возрастает, а затем (с началом роста кривой зависимости  $T_{g, max}(t)$ ) начинает ступенчато уменьшаться, и спустя некоторое время кривая  $d^{2}(t)$  приобретает почти постоянный (отрицательный) наклон. Начальный рост размера капель объясняется тепловым расширением жидкости. Продолжительность этого периода тем больше, чем тяжелее углеводород, и может превышать половину всего времени жизни капли. По темпу снижения кривой зависимости  $d^2(t)$  на ее последнем почти линейном участке можно судить о константе скорости горения капли к. В целом, из рис. 9 видно, что расчетные задержки самовоспламенения с ростом n (от 11 до 16) увеличиваются, а константа скорости горения k остается приблизительно постоянной. Этот результат качественно согласуется с известными экспериментальными данными.

На рис. 13 проведено количественное сравнение расчетных (кривая) и измеренных (точки [24, 25]) зависимостей задержки самовоспламенения  $\tau_i$  одиночных капель н-гексадекана в воздухе от начального диаметра капли  $d_0$  при  $T_{g0} = 1220$  К и



**Рис. 12.** Расчетные зависимости максимальной температуры газа  $T_{g, max}$  (сплошные кривые) и квадрата диаметра капли  $d^2$  (штриховые) от времени *t* при самовоспламенении капель углеводородов C<sub>11</sub>H<sub>24</sub>, C<sub>13</sub>H<sub>28</sub> и C<sub>16</sub>H<sub>34</sub> (*n* = 11, 13, 16);  $d_0 = 60$  мкм,  $T_{g0} = 1000$  K,  $P_0 = 20$  атм и  $\Phi = 1$ .

 $P_0 = 1$  атм. Полученное согласие результатов можно рассматривать как удовлетворительное, если учесть, что в отличие от расчетов в экспериментах капли обтекались воздухом с небольшими числами Рейнольдса.

#### ЗАКЛЮЧЕНИЕ

В работе предложен кинетический механизм окисления парафиновых углеводородов вплоть до н-гексадекана С<sub>16</sub>Н<sub>34</sub>. Механизм включает главные процессы, определяющие скорость реакции и образование основных промежуточных и конечных продуктов и имеет статус неэмпирического детального механизма, поскольку все элементарные реакции имеют кинетическое обоснование. Механизм построен на принципе неэкстенсивного построения механизмов, где главным считается не многообразие продуктов и реакций, а универсальность основных каналов процессов и важных типов элементарных актов. При переходе от детального механизма окисления углеводородов С<sub>1</sub>-С<sub>10</sub> к окислению н-гексадекана С<sub>16</sub>Н<sub>34</sub> использовали следующие упрощения: 1) не применяли схемы с так называемым двойным присоединением кислорода (сначала к перекисному радикалу, а затем к его изомеризованной форме), а считали достаточным первое присоединение; и 2) не рассматривали в качестве промежуточных компонентов изоалкильные радикалы и их производные, поскольку этот путь окисления медленнее, чем окисление через компоненты с нормальным строением. Полученный детальный ки-

ХИМИЧЕСКАЯ ФИЗИКА том 32 № 4 2013



**Рис. 13.** Сравнение расчетной (кривая) и измеренной (точки [24, 25]) зависимостей периода индукции самовоспламенения  $\tau_i$  от начального диаметра капель н-гексадекана  $d_0$  при  $T_{g0} = 1220$  К и  $P_0 = 1$  атм.

нетический механизм окисления н-гексадекана  $C_{16}H_{34}$  оказался достаточно компактным, что важно для построения механизмов окисления более сложных углеводородов.

Важнейшая особенность механизма – проявление стадийности в виде холодных и голубых пламен при низкотемпературном самовоспламенении. Нами выполнены расчеты самовоспламенения и горения гомогенных смесей и капель углеводородов от н-ундекана до н-гексадекана с воздухом в широком диапазоне начальных условий, проведено сравнение результатов расчетов с экспериментальными данными и получено их удовлетворительное согласие. Это позволяет утверждать, что принятый нами принцип построения механизмов окисления изучаемых углеводородов, а также основные каналы реакций выбраны в общем правильно. Файл с данными кинетического механизма будет размещен на сайте www.combex.ru.

Работа выполнена в рамках проекта Российского фонда фундаментальных исследований (грант № 11-08-01297) и Программы Президиума РАН "Горение и взрыв".

## СПИСОК ЛИТЕРАТУРЫ

- Chevalier C., Louessard P., Muller U.C., Warnatz J. // Proc. Joint meeting Sov. Ital. Sections Combust. Inst. Pisa: Combust. Inst., 1990. P. 5.
- 2. Westbrook C.K., Pitz W.J., Herbinet O. et al. // Combust. and Flame. 2009. V. 156. P. 181.

- Лебедев А.Б., Секундов А.Н., Савельев А.М., Старик А.М., Титова Н.С. // Неравновесные физико-химические процессы в газовых потоках и новые принципы организации горения / Под. ред. Старика А.М. М.: Торус Пресс, 2011. С. 755.
- 4. *Титова Н.С., Торохов С.А., Старик А.М. //* Там же. С. 88.
- 5. Соколик А.С. Самовоспламенение, пламя и детонация в газах. М.: Изд-во АН СССР, 1960.
- 6. *Lewis B., Elbe G.* Combustion, Flames and explosions of Gases. Orlando: Acad. Press, 1987.
- 7. Басевич В. Я., Фролов С.М. // Успехи химии. 2007. Т. 76. № 9. С. 927.
- 8. Басевич В.Я., Фролов С.М. // Хим. физика. 2006. Т. 25. № 11. С. 87.
- 9. Басевич В.Я., Беляев А.А., Фролов С.М. // Там же. 2007. Т. 26. № 7. С. 37.
- 10. Басевич В.Я., Беляев А.А., Фролов С.М. // Там же. 2009. Т. 28. № 3. С. 59.
- 11. Басевич В.Я., Беляев А.А., Фролов С.М. // Там же. 2010. Т. 29. № 7 С. 71.
- 12. Басевич В.Я., Беляев А.А., Посвянский В.С., Фролов С.М. // Там же. 2010. Т. 29. № 12. С. 40.
- Басевич В.Я., Беляев А.А., Медведев С.Н., Посвянский В.С., Фролов С.М. // Там же. 2011. Т. 30. № 12. С. 9.

- 14. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей. Л.: Химия, 1982.
- Vasu S.S., Davidson D.F., Hanson R.K. // Proc. 26th Intern. Symp. on Shock Waves. Gottingen, Germany, 2007. Paper № P2730.
- 16. Davidson D.F., Haylett D.R., Hanson R.K. // Combust. and Flame. 2008. V. 155. P. 108.
- 17. *Shen H.-P.S., Steinberg J., Vanderer J. et al.* // Energy Fuels. 2009. V. 23. P. 2482.
- Vasu S.S., Davidson D.F., Hong Z. et al. // Proc. Combust. Inst. 2009. V. 32. P. 173.
- 19. Davidson D.F., Hong Z., Pilla A. et al. // Ibid. V. 33. P. 151.
- 20. Беляев А.А., Посвянский В.С. // Алгоритмы и программы. Информ. бюлл. гос. фонда алгоритмов и программ СССР. 1985. № 3. С. 35.
- 21. *Kumar K., Sung C.J.* // Combust. and Flame. 2007. V. 151. P. 209.
- Басевич В.Я., Беляев А.А., Медведев С.Н, Посвянский В.С., Фролов Ф.С., Фролов С.М. // Хим. физика. 2010. Т. 29. № 12. С. 50.
- 23. Соколик А.С., Басевич В.Я. // ЖФХ. 1954. Т. 28. С. 1935.
- 24. Whang J.-J., Yukao C.-Y., Ho J.-T., Wong S.-C. // Combust. and Flame. 1997. V. 110. P. 366.
- 25. Yang J.-R., Yukao C.-Y., Whang J.-J., Wong S.-C. // Ibid. 2000. V. 123. P. 266.